Designing microplastic-binding peptides with a variational quantum circuit–based hybrid quantum-classical approach

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-18 DOI:10.1126/sciadv.adq8492
Raul Conchello Vendrell, Akshay Ajagekar, Michael T. Bergman, Carol K. Hall, Fengqi You
{"title":"Designing microplastic-binding peptides with a variational quantum circuit–based hybrid quantum-classical approach","authors":"Raul Conchello Vendrell, Akshay Ajagekar, Michael T. Bergman, Carol K. Hall, Fengqi You","doi":"10.1126/sciadv.adq8492","DOIUrl":null,"url":null,"abstract":"De novo peptide design exhibits great potential in materials engineering, particularly for the use of plastic-binding peptides to help remediate microplastic pollution. There are no known peptide binders for many plastics—a gap that can be filled with de novo design. Current computational methods for peptide design exhibit limitations in sampling and scaling that could be addressed with quantum computing. Hybrid quantum-classical methods can leverage complementary strengths of near-term quantum algorithms and classical techniques for complex tasks like peptide design. This work introduces a hybrid quantum-classical generative framework for designing plastic-binding peptides combining variational quantum circuits with a variational autoencoder network. We demonstrate the framework’s effectiveness in generating peptide candidates, evaluate its efficiency for property-oriented design, and validate the candidates with molecular dynamics simulations. This quantum computing–based approach could accelerate the development of biomolecular tools for environmental and biomedical applications while advancing the study of biomolecular systems through quantum technologies.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"86 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq8492","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

De novo peptide design exhibits great potential in materials engineering, particularly for the use of plastic-binding peptides to help remediate microplastic pollution. There are no known peptide binders for many plastics—a gap that can be filled with de novo design. Current computational methods for peptide design exhibit limitations in sampling and scaling that could be addressed with quantum computing. Hybrid quantum-classical methods can leverage complementary strengths of near-term quantum algorithms and classical techniques for complex tasks like peptide design. This work introduces a hybrid quantum-classical generative framework for designing plastic-binding peptides combining variational quantum circuits with a variational autoencoder network. We demonstrate the framework’s effectiveness in generating peptide candidates, evaluate its efficiency for property-oriented design, and validate the candidates with molecular dynamics simulations. This quantum computing–based approach could accelerate the development of biomolecular tools for environmental and biomedical applications while advancing the study of biomolecular systems through quantum technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用基于变分量子电路的量子-经典混合方法设计微塑料结合肽
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Chiral flat-band optical cavity with atomically thin mirrors An agile multimodal microrobot with architected passively morphing wheels Terrestrial evidence for volcanogenic sulfate-driven cooling event ~30 kyr before the Cretaceous–Paleogene mass extinction Regional differences in three-dimensional fiber organization, smooth muscle cell phenotype, and contractility in the pregnant mouse cervix Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1