Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-11-22 DOI:10.1021/acs.jcim.4c0176910.1021/acs.jcim.4c01769
Thomas J. Summers, Difan Zhang, Josiane A. Sobrinho, Ana de Bettencourt-Dias, Roger Rousseau, Vassiliki-Alexandra Glezakou* and David C. Cantu*, 
{"title":"Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution","authors":"Thomas J. Summers,&nbsp;Difan Zhang,&nbsp;Josiane A. Sobrinho,&nbsp;Ana de Bettencourt-Dias,&nbsp;Roger Rousseau,&nbsp;Vassiliki-Alexandra Glezakou* and David C. Cantu*,&nbsp;","doi":"10.1021/acs.jcim.4c0176910.1021/acs.jcim.4c01769","DOIUrl":null,"url":null,"abstract":"<p ><i>Ensemble</i>-average sampling of structures from <i>ab initio</i> molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu(NO<sub>3</sub>)<sub>3</sub> dissolved in acetonitrile with a terpyridine ligand (terpyNO<sub>2</sub>), and Nd(NO<sub>3</sub>)<sub>3</sub> dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu(NO<sub>3</sub>)<sub>3</sub>(terpyNO<sub>2</sub>) and Nd(NO<sub>3</sub>)(acetonitrile)<sub>3</sub>, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8926–8936 8926–8936"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01769","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu(NO3)3(terpyNO2) and Nd(NO3)(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将全局优化算法与 EXAFS 配对,以确定溶液中的镧系元素结构特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support. DiffInt: A Diffusion Model for Structure-Based Drug Design with Explicit Hydrogen Bond Interaction Guidance. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABAA Receptor Negative Allosteric Modulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1