Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via Markov State Modeling

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-11-26 DOI:10.1021/acs.jcim.4c0136410.1021/acs.jcim.4c01364
Chris Zhang, Meghan Osato and David L. Mobley*, 
{"title":"Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via Markov State Modeling","authors":"Chris Zhang,&nbsp;Meghan Osato and David L. Mobley*,&nbsp;","doi":"10.1021/acs.jcim.4c0136410.1021/acs.jcim.4c01364","DOIUrl":null,"url":null,"abstract":"<p >As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system. From this analysis, we arrive at two primary conclusions. First, assignment of simulation trajectories into discrete states should not be done simply based on RMSD to crystal structures as this can result in misassignment of states. Second, the different metastable conformations studied here need to be carefully treated, as we estimate the time scales for conformational interconversion to be on the order of 10<sup>2</sup> to 10<sup>3</sup> ns─far longer than time scales for typical binding calculations. We conclude with a discussion on the need to develop enhanced sampling methods to generally account for significant changes in protein conformation due to relatively small ligand perturbations.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8870–8879 8870–8879"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject of numerous computational free energy studies. However, previous studies have failed to fully sample and account for the observed changes in the binding pocket of T4 L99A upon binding of a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, intermediate, and open states for T4 L99A previously reported in experiment in MD and establish definitions for these states based on the dynamics of the system. From this analysis, we arrive at two primary conclusions. First, assignment of simulation trajectories into discrete states should not be done simply based on RMSD to crystal structures as this can result in misassignment of states. Second, the different metastable conformations studied here need to be carefully treated, as we estimate the time scales for conformational interconversion to be on the order of 102 to 103 ns─far longer than time scales for typical binding calculations. We conclude with a discussion on the need to develop enhanced sampling methods to generally account for significant changes in protein conformation due to relatively small ligand perturbations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. Fatty Alcohol Membrane Model for Quantifying and Predicting Amphiphilicity. Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1