Henry Park;Mohammed Abdullatif;Ehung Chen;Tamer Ali
{"title":"112-Gb/s DSP-Based PAM-4 Transceivers for Large-Scale Ethernet Switching Systems","authors":"Henry Park;Mohammed Abdullatif;Ehung Chen;Tamer Ali","doi":"10.1109/OJSSCS.2024.3488654","DOIUrl":null,"url":null,"abstract":"As modern ASICs integrate several hundred interconnect ports in a large package, ASIC Serdes design faces challenging performance, power, and area targets. Thanks to architectural advancements and technology scaling, a DSP-based transceiver has demonstrated better than 40-dB loss compensation with competitive power and area that enabled very large-scale Serdes integration in a single package. This article reviews two recent publications for long-reach ASIC Serdes designed in 5- and 7-nm FinFET. With detailed discussions on design challenges from major building blocks, TX/RX/PLL, a novel TX data path bandwidth extension technique by a feedback equalizer is proposed with silicon data.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"277-289"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738450","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10738450/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As modern ASICs integrate several hundred interconnect ports in a large package, ASIC Serdes design faces challenging performance, power, and area targets. Thanks to architectural advancements and technology scaling, a DSP-based transceiver has demonstrated better than 40-dB loss compensation with competitive power and area that enabled very large-scale Serdes integration in a single package. This article reviews two recent publications for long-reach ASIC Serdes designed in 5- and 7-nm FinFET. With detailed discussions on design challenges from major building blocks, TX/RX/PLL, a novel TX data path bandwidth extension technique by a feedback equalizer is proposed with silicon data.