SRAM and Mixed-Signal Logic With Noise Immunity in 3-nm Nano-Sheet Technology

Rajiv V. Joshi;J. Frougier;Alberto Cestero;Crystal Castellanos;Sudipto Chakraborty;Carl Radens;M. Silvestre;S. Lucarini;I. Ahsan;E. Leobandung
{"title":"SRAM and Mixed-Signal Logic With Noise Immunity in 3-nm Nano-Sheet Technology","authors":"Rajiv V. Joshi;J. Frougier;Alberto Cestero;Crystal Castellanos;Sudipto Chakraborty;Carl Radens;M. Silvestre;S. Lucarini;I. Ahsan;E. Leobandung","doi":"10.1109/OJSSCS.2024.3524495","DOIUrl":null,"url":null,"abstract":"A modular 4.26 Mb SRAM based on a 82 Kb/block structure with mixed signal logic is fabricated, characterized, and demonstrated with full functionality in a 3-nm nanosheet (NS) technology. Designed macros utilize new circuits for supply boosting, read, and write assist techniques. The proposed circuits are evaluated extensively and compared to prior techniques. Statistical simulations are used to predict the benefits of these circuits in the context of dual supply use. Through programmable local clock and wordline (WL) pulsewidths, SRAM cell margins and speeds are demonstrated through hardware measurement. Stability assists as well as dual supply techniques are used to demonstrate how noise can be suppressed during traditional memory operations (single WL on), as well as to support mixed-signal logic block operation (multiple WLs on). Functionality is shown down to a cell supply of 0.45 V with an estimated margin/speed of 6 GHz for SRAM cells (high density—<inline-formula> <tex-math>$0.026~\\mu $ </tex-math></inline-formula>m<sup>2</sup>, and high current—<inline-formula> <tex-math>$0.032~\\mu $ </tex-math></inline-formula>m<sup>2</sup>).","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"5 ","pages":"60-74"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839490","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839490/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A modular 4.26 Mb SRAM based on a 82 Kb/block structure with mixed signal logic is fabricated, characterized, and demonstrated with full functionality in a 3-nm nanosheet (NS) technology. Designed macros utilize new circuits for supply boosting, read, and write assist techniques. The proposed circuits are evaluated extensively and compared to prior techniques. Statistical simulations are used to predict the benefits of these circuits in the context of dual supply use. Through programmable local clock and wordline (WL) pulsewidths, SRAM cell margins and speeds are demonstrated through hardware measurement. Stability assists as well as dual supply techniques are used to demonstrate how noise can be suppressed during traditional memory operations (single WL on), as well as to support mixed-signal logic block operation (multiple WLs on). Functionality is shown down to a cell supply of 0.45 V with an estimated margin/speed of 6 GHz for SRAM cells (high density— $0.026~\mu $ m2, and high current— $0.032~\mu $ m2).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Special Section on High-Performance Frequency Synthesizers SRAM and Mixed-Signal Logic With Noise Immunity in 3-nm Nano-Sheet Technology How to Design a Differential CMOS LC Oscillator A 70-MHz Bandwidth Time-Interleaved Noise-Shaping SAR-Assisted Delta-Sigma ADC With Digital Cross-Coupling in 28-nm CMOS Timing-Skew Calibration Techniques in Time-Interleaved ADCs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1