Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets

B. B. Baldanov, A. P. Semenov, Ts. V. Ranzhurov
{"title":"Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets","authors":"B. B. Baldanov,&nbsp;A. P. Semenov,&nbsp;Ts. V. Ranzhurov","doi":"10.1134/S1027451024701143","DOIUrl":null,"url":null,"abstract":"<p>The change of polytetrafluoroethylene surface properties under the influence of nonthermal nonequilibrium plasma generated by plasma jets at atmospheric pressure is shown. The unsteady form of diffuse discharge, a glow discharge, which is superimposed on weak-current spark discharges, is experimentally realized and formed in the gas flow in the form of atmospheric pressure plasma jets. The plasma jet (diameter of the plasma jet is 2.5 cm, length of the jet is 1–2 cm) is oriented perpendicularly to the surface of polytetrafluoroethylene. Water contact angle measurements and electron microscopy are used to determine the surface characteristics of the material. An intensive and homogeneous improvement of the polymer surface wettability is observed on a large area (contact area <i>S</i> ≈ 7 cm<sup>2</sup>) subjected to plasma treatment during the first seconds of exposure to the plasma jet. The contact angle of the original polytetrafluoroethylene with a drop of water is 102°, while the contact angle θ decreases to 65° when exposed to plasma jets. In the area of plasma jets impact at atmospheric pressure, in contrast to the original surface, there are pronounced inhomogeneous surface formations, and at the interface a sharp change in the wettability of the surface is observed. On the surface of polytetrafluoroethylene sample in the area of plasma jets impact, the percentage of carbon increases, while the percentage of fluorine decreases.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 5","pages":"1271 - 1275"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024701143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The change of polytetrafluoroethylene surface properties under the influence of nonthermal nonequilibrium plasma generated by plasma jets at atmospheric pressure is shown. The unsteady form of diffuse discharge, a glow discharge, which is superimposed on weak-current spark discharges, is experimentally realized and formed in the gas flow in the form of atmospheric pressure plasma jets. The plasma jet (diameter of the plasma jet is 2.5 cm, length of the jet is 1–2 cm) is oriented perpendicularly to the surface of polytetrafluoroethylene. Water contact angle measurements and electron microscopy are used to determine the surface characteristics of the material. An intensive and homogeneous improvement of the polymer surface wettability is observed on a large area (contact area S ≈ 7 cm2) subjected to plasma treatment during the first seconds of exposure to the plasma jet. The contact angle of the original polytetrafluoroethylene with a drop of water is 102°, while the contact angle θ decreases to 65° when exposed to plasma jets. In the area of plasma jets impact at atmospheric pressure, in contrast to the original surface, there are pronounced inhomogeneous surface formations, and at the interface a sharp change in the wettability of the surface is observed. On the surface of polytetrafluoroethylene sample in the area of plasma jets impact, the percentage of carbon increases, while the percentage of fluorine decreases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
期刊最新文献
Surface Modification of Polytetrafluoroethylene by Atmospheric-Pressure Plasma Jets Evaluation of the Component Composition and Thickness of the Modified Layer of Tungsten and Tantalum Carbides during Stationary Sputtering by Helium Ions Bombardment Increasing the Service Life of Main Pipelines Using a Composite Waterproofing Material with Increased Durability Influence of Mechanical Damage to an Interferometer Block on Its X-Ray Diffraction Pattern Effect of Exposure to Nonthermal Atmospheric Pressure Plasma on Surface Modification of Cereal Seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1