Traditional optimization of plasma-sprayed coatings involves resource-intensive experimental iterations of spraying parameters. This study presents a novel computational protocol for designing and manufacturing ceramic (e.g., Al2O3) coatings, reducing the need for extensive experiments. A computational fluid dynamics approach is adopted to simulate the morphology of Al2O3 powder feedstock splats. These simulated splats are then stochastically arranged to construct three-dimensional (3D) representations of plasma-sprayed Al2O3 coatings. The effective elastic modulus of the coating is computed using finite element analysis of the simulated microstructure. The introduced "Desktop Manufacturing Protocol" showcases a significant reduction in the requisite plasma spraying experiments, offering an optimized coating with desired microstructure and mechanical properties. This integrated computational approach not only streamlines the coating development process but also provides insights into the intricate relationships between spraying parameters, microstructure, and overall coating performance.