Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-12-16 DOI:10.1007/s10921-024-01147-9
Miroslav Yosifov, Thomas Lang, Virginia Florian, Stefan Gerth, Jan De Beenhouwer, Jan Sijbers, Johann Kastner, Christoph Heinzl
{"title":"Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI","authors":"Miroslav Yosifov,&nbsp;Thomas Lang,&nbsp;Virginia Florian,&nbsp;Stefan Gerth,&nbsp;Jan De Beenhouwer,&nbsp;Jan Sijbers,&nbsp;Johann Kastner,&nbsp;Christoph Heinzl","doi":"10.1007/s10921-024-01147-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the process of generating artificial training data for the detection and classification of defective areas in X-ray computed tomography (XCT) scans in the agricultural domain using AI techniques. It aims to determine the minimum detectability limit for such defects through analyses regarding the Probability of Detection based on analytic XCT simulations. For this purpose, the presented methodology introduces randomized shape variations in surface models used as descriptors for specimens in XCT simulations for generating virtual XCT data. Specifically, the agricultural sector is targeted in this work in terms of analyzing common degradation or defective areas in rice products. This is of special interest due to the huge biological genotypic and phenotypic variations occurring in nature. The proposed method is demonstrated on the application of analyzing rice grains for common defects (chalky and pore areas).</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01147-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01147-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the process of generating artificial training data for the detection and classification of defective areas in X-ray computed tomography (XCT) scans in the agricultural domain using AI techniques. It aims to determine the minimum detectability limit for such defects through analyses regarding the Probability of Detection based on analytic XCT simulations. For this purpose, the presented methodology introduces randomized shape variations in surface models used as descriptors for specimens in XCT simulations for generating virtual XCT data. Specifically, the agricultural sector is targeted in this work in terms of analyzing common degradation or defective areas in rice products. This is of special interest due to the huge biological genotypic and phenotypic variations occurring in nature. The proposed method is demonstrated on the application of analyzing rice grains for common defects (chalky and pore areas).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Non-Destructive Measurement of Chloride Profiles in Cementitious Materials Using NMR Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI Evaluation of RGB-D Image for Counting Exposed Aggregate Number on Pavement Surface Based on Computer Vision Technique Integrated Optical Coherence Tomography and Hyperspectral Imaging for Automated Structural Health Monitoring of Carbon Fibre Aircraft Structures Statistical and Machine Learning-Based Imaging with Long Pulse Thermography for the Detection of Non-standardised Defects in CFRP Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1