Regional cooling potential from expansion of perennial grasses in Europe

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-12-19 DOI:10.1038/s43247-024-01923-5
Xia Zhang, Bo Huang, Nariê Rinke Dias de Souza, Xiangping Hu, Francesco Cherubini
{"title":"Regional cooling potential from expansion of perennial grasses in Europe","authors":"Xia Zhang, Bo Huang, Nariê Rinke Dias de Souza, Xiangping Hu, Francesco Cherubini","doi":"10.1038/s43247-024-01923-5","DOIUrl":null,"url":null,"abstract":"Perennial grasses are an option to mitigate global warming, increase energy security, and alleviate environmental pressures within agricultural landscapes. Their cultivation alters near-surface temperature in ways that are still largely unclear. Here, a regional climate model with an enhanced representation of perennial grasses shows that converting today’s cropland areas in Europe induces annual mean temperature reductions in summer and autumn (up to –1 °C), which are primarily driven by a later harvest of perennial grasses relative to annual crops. Cultivation of perennial grasses where they deliver stronger biogeophysical cooling can achieve a similar annual mean temperature reduction on half of the land. This cooling can counteract up to 50% of the projected future warming and it is three times larger than what is achieved via carbon emission reductions. A sustainable deployment of perennial grasses has the potential to link global mitigation objectives with co-benefits for the local climate and environment. In Europe, converting today’s cropland areas into perennial grasses, such as switchgrass, reduces annual mean temperatures in summer and autumn, according to an analysis that uses a regional climate model and life cycle assessment.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01923-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01923-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Perennial grasses are an option to mitigate global warming, increase energy security, and alleviate environmental pressures within agricultural landscapes. Their cultivation alters near-surface temperature in ways that are still largely unclear. Here, a regional climate model with an enhanced representation of perennial grasses shows that converting today’s cropland areas in Europe induces annual mean temperature reductions in summer and autumn (up to –1 °C), which are primarily driven by a later harvest of perennial grasses relative to annual crops. Cultivation of perennial grasses where they deliver stronger biogeophysical cooling can achieve a similar annual mean temperature reduction on half of the land. This cooling can counteract up to 50% of the projected future warming and it is three times larger than what is achieved via carbon emission reductions. A sustainable deployment of perennial grasses has the potential to link global mitigation objectives with co-benefits for the local climate and environment. In Europe, converting today’s cropland areas into perennial grasses, such as switchgrass, reduces annual mean temperatures in summer and autumn, according to an analysis that uses a regional climate model and life cycle assessment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲多年生牧草扩张带来的区域降温潜力
多年生草是缓解全球变暖、增加能源安全、减轻农业景观环境压力的一种选择。它们的种植改变近地表温度的方式在很大程度上仍不清楚。本研究中,一个多年生牧草代表性增强的区域气候模型表明,欧洲当前耕地面积的转换导致夏季和秋季的年平均气温下降(高达-1°C),这主要是由于多年生牧草的收获比一年生作物晚。多年生草的种植可以提供更强的生物地球物理冷却,可以在一半的土地上实现类似的年平均温度降低。这种降温可以抵消预计未来变暖的50%,是通过减少碳排放所实现的效果的三倍。多年生草的可持续部署有可能将全球缓解目标与当地气候和环境的共同利益联系起来。根据一项使用区域气候模型和生命周期评估的分析,在欧洲,把今天的农田变成多年生草,比如柳枝稷,会降低夏季和秋季的年平均气温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Homo erectus adapted to steppe-desert climate extremes one million years ago. A transdisciplinary, comparative analysis reveals key risks from Arctic permafrost thaw. The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds. Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1