Jiahao Wan, Mikuláš Vlk, Marianna Nytka, Tuan Ngoc Kim Vu, Karel Lemr, František Tureček
{"title":"Photochemical and Collision-Induced Cross-Linking of Lys, Arg, and His to Nitrile Imines in Peptide Conjugate Ions in the Gas Phase.","authors":"Jiahao Wan, Mikuláš Vlk, Marianna Nytka, Tuan Ngoc Kim Vu, Karel Lemr, František Tureček","doi":"10.1021/jasms.4c00438","DOIUrl":null,"url":null,"abstract":"<p><p>We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA-<i>tet</i>-K, KAAA-<i>tet</i>-K, and HAAA-<i>tet</i>-K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N<sub>2</sub> and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups. Cross-linking yields were determined from UVPD-MS<sup>2</sup> measurements as 67%, 66%, and 84% for RAAA-<i>tet</i>-K, KAAA-<i>tet</i>-K, and HAAA-<i>tet</i>-K ions, respectively. CID-MS<sup>3</sup> of the denitrogenated ion intermediates from RAAA-<i>tet</i>-K, KAAA-<i>tet</i>-K, and HAAA-<i>tet</i>-K indicated overall cross-linking yields of 80%, 89%, and 80%, respectively. The nature of the cross-linking reactions and cross-link structures were investigated for RAAA-<i>tet</i>-K by high-resolution cyclic ion mobility mass spectrometry that identified precursor ion conformers and multiple dissociation products. All sequences were subjected to conformational analysis by Born-Oppenheimer molecular dynamics, and energy analysis by density functional theory calculations with M06-2X/def2qzvpp that provided relative and dissociation energies for several cross-link structural types. The cross-linking reactions were substantially exothermic, driving the efficient conversion of nitrile-imine intermediates to cyclic products. The principal steps in covalent cross-linking involved proton transfer onto the nitrile imine group accompanied by nucleophilic attack by the peptide side-chain and amide groups. Blocking the proton transfer and nucleophile resulted in a loss of cross-linking abilities.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00438","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA-tet-K, KAAA-tet-K, and HAAA-tet-K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N2 and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups. Cross-linking yields were determined from UVPD-MS2 measurements as 67%, 66%, and 84% for RAAA-tet-K, KAAA-tet-K, and HAAA-tet-K ions, respectively. CID-MS3 of the denitrogenated ion intermediates from RAAA-tet-K, KAAA-tet-K, and HAAA-tet-K indicated overall cross-linking yields of 80%, 89%, and 80%, respectively. The nature of the cross-linking reactions and cross-link structures were investigated for RAAA-tet-K by high-resolution cyclic ion mobility mass spectrometry that identified precursor ion conformers and multiple dissociation products. All sequences were subjected to conformational analysis by Born-Oppenheimer molecular dynamics, and energy analysis by density functional theory calculations with M06-2X/def2qzvpp that provided relative and dissociation energies for several cross-link structural types. The cross-linking reactions were substantially exothermic, driving the efficient conversion of nitrile-imine intermediates to cyclic products. The principal steps in covalent cross-linking involved proton transfer onto the nitrile imine group accompanied by nucleophilic attack by the peptide side-chain and amide groups. Blocking the proton transfer and nucleophile resulted in a loss of cross-linking abilities.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives