{"title":"The accumulation process of pollutants in deposited particles of different sizes on different roads in Beijing, China.","authors":"Xiaoli Du, Fei Liu, Rongying Jiang, Dianxi Tian, Zedong Zheng, Huihui Sheng","doi":"10.1007/s10653-024-02338-z","DOIUrl":null,"url":null,"abstract":"<p><p>Road-Deposited Sediments (RDS) samples were collected from four different roads in Beijing, and the distribution of pollutants in RDS with various particle sizes was compared. In this study, the cumulative mass of RDS exhibited a positive correlation with the number of dry days, and the RDS load below 75 μm was also influenced by road traffic volume. As traffic volume escalated, there was a corresponding increase in the load of these smaller RDS. Most pollutants accumulated within RDS with sizes below 150 μm, rendering them the primary contributors to the pollution. In terms of the antecedent dry-weather days, fifteen days emerged as a potentially pivotal point, with both the rate of pollutant accumulation and the contribution of pollution sources to RDS having stabilized after this duration. The origins of pollutants in roads of different functional areas exhibited certain disparities. The pollutants on major roads with high traffic volume were attributed to frequent vehicular activities. The pollutants on residential roads stemmed from soil particles and fallen leaves in the roadside green belts as well as from human activities. And the pollutants on urban-rural crossroad might be attributed to the industrial contamination with factories located on one side.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"19"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02338-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Road-Deposited Sediments (RDS) samples were collected from four different roads in Beijing, and the distribution of pollutants in RDS with various particle sizes was compared. In this study, the cumulative mass of RDS exhibited a positive correlation with the number of dry days, and the RDS load below 75 μm was also influenced by road traffic volume. As traffic volume escalated, there was a corresponding increase in the load of these smaller RDS. Most pollutants accumulated within RDS with sizes below 150 μm, rendering them the primary contributors to the pollution. In terms of the antecedent dry-weather days, fifteen days emerged as a potentially pivotal point, with both the rate of pollutant accumulation and the contribution of pollution sources to RDS having stabilized after this duration. The origins of pollutants in roads of different functional areas exhibited certain disparities. The pollutants on major roads with high traffic volume were attributed to frequent vehicular activities. The pollutants on residential roads stemmed from soil particles and fallen leaves in the roadside green belts as well as from human activities. And the pollutants on urban-rural crossroad might be attributed to the industrial contamination with factories located on one side.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.