Advancing methodologies for assessing the impact of land use changes on water quality: a comprehensive review and recommendations.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2025-03-05 DOI:10.1007/s10653-025-02413-z
Silin Su, Kai Ma, Tianhong Zhou, Yuting Yao, Huijuan Xin
{"title":"Advancing methodologies for assessing the impact of land use changes on water quality: a comprehensive review and recommendations.","authors":"Silin Su, Kai Ma, Tianhong Zhou, Yuting Yao, Huijuan Xin","doi":"10.1007/s10653-025-02413-z","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing scholarly focus on the ramifications of land use changes on water quality, although substantial research has been undertaken, the findings demonstrate pronounced spatial variability and the heterogeneity of research methodologies. To address this critical gap, this review offers a rigorous evaluation of the strengths and limitations of current research methodologies, providing targeted recommendations for refinement. It systematically assesses the existing body of literature concerning the influence of land use changes on water quality, with particular emphasis on the spatial heterogeneity of research results and the uniformity of employed methodologies. Despite variations in geographical contexts and research subjects, the methodological paradigms remain largely consistent, typically encompassing the acquisition and analysis of water quality and land use data, the delineation of buffer zones, and the application of correlation and regression analyses. However, these approaches encounter limitations in addressing regional disparities, nonlinear interactions, and real-time monitoring complexities. The review advocates for methodological advancements, such as the integration of automated monitoring systems and IoT technologies, alongside the fusion of deep learning algorithms with remote sensing techniques, to enhance both the precision and efficiency of data collection. Furthermore, it recommends the standardization of buffer zone delineation, the reinforcement of foundational water quality assessments, and the utilization of catchment-scale analyses to more accurately capture the influence of land use changes on water quality. Future inquiries should prioritize the development of interdisciplinary ecological models to elucidate the interaction and feedback mechanisms between land use, water quality, and climate change.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"101"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02413-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing scholarly focus on the ramifications of land use changes on water quality, although substantial research has been undertaken, the findings demonstrate pronounced spatial variability and the heterogeneity of research methodologies. To address this critical gap, this review offers a rigorous evaluation of the strengths and limitations of current research methodologies, providing targeted recommendations for refinement. It systematically assesses the existing body of literature concerning the influence of land use changes on water quality, with particular emphasis on the spatial heterogeneity of research results and the uniformity of employed methodologies. Despite variations in geographical contexts and research subjects, the methodological paradigms remain largely consistent, typically encompassing the acquisition and analysis of water quality and land use data, the delineation of buffer zones, and the application of correlation and regression analyses. However, these approaches encounter limitations in addressing regional disparities, nonlinear interactions, and real-time monitoring complexities. The review advocates for methodological advancements, such as the integration of automated monitoring systems and IoT technologies, alongside the fusion of deep learning algorithms with remote sensing techniques, to enhance both the precision and efficiency of data collection. Furthermore, it recommends the standardization of buffer zone delineation, the reinforcement of foundational water quality assessments, and the utilization of catchment-scale analyses to more accurately capture the influence of land use changes on water quality. Future inquiries should prioritize the development of interdisciplinary ecological models to elucidate the interaction and feedback mechanisms between land use, water quality, and climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
pH induced incongruent-dissolution impacts Al-ferrihydrite transformations and As mobilization. Research on the traceability and treatment of nitrate pollution in groundwater: a comprehensive review. Hydrogeochemical characterization and potential geogenic source of fluoride contamination in Gariaband district of southern Chhattisgarh, India. Identification of salinity sources in groundwater at Golgohar Mine using self-organizing maps (SOM) and correlation analysis: a hydrogeochemical and isotopic approach, south-central Iran. Advancing methodologies for assessing the impact of land use changes on water quality: a comprehensive review and recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1