{"title":"Emergence of biphasic versus monotonic response of actin retrograde flow and cell traction force with varying substrate rigidity.","authors":"Partho Sakha De, Rumi De","doi":"10.1103/PhysRevE.110.054414","DOIUrl":null,"url":null,"abstract":"<p><p>The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity. In the former, maximum traction force and minimum retrograde flow velocity are observed at an intermediate optimal substrate stiffness; while in the latter, the actin retrograde flow decreases and traction force increases with increasing substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model exhibits both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell's ability to sense and adapt to the fast-growing forces. Furthermore, our analysis shows how competition between different timescales regulated by loading rate sensitivity influences the biphasic versus monotonic behavior and the emergence of optimal substrate rigidity in the biphasic scenario. We also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and predict the loss of cell sensitivity to variation in substrate rigidity when adhesions are subjected to high forces.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054414"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054414","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes, such as cell migration, cell differentiation, tissue development, and cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic vs a monotonic relationship of the retrograde flow and cell traction force with substrate rigidity. In the former, maximum traction force and minimum retrograde flow velocity are observed at an intermediate optimal substrate stiffness; while in the latter, the actin retrograde flow decreases and traction force increases with increasing substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model exhibits both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell's ability to sense and adapt to the fast-growing forces. Furthermore, our analysis shows how competition between different timescales regulated by loading rate sensitivity influences the biphasic versus monotonic behavior and the emergence of optimal substrate rigidity in the biphasic scenario. We also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and predict the loss of cell sensitivity to variation in substrate rigidity when adhesions are subjected to high forces.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.