{"title":"Cell theories for the chiral crystal phase of hard equilateral triangles.","authors":"Yuri Martínez-Ratón, Enrique Velasco","doi":"10.1103/PhysRevE.110.054701","DOIUrl":null,"url":null,"abstract":"<p><p>We derive several versions of the cell theory for a crystal phase of hard equilateral triangles. To that purpose we analytically calculated the free area of a frozen oriented or freely rotating particle inside the cavity formed by its neighbors in a chiral configuration of their orientations. From the most successful versions of the theory we predict an equation of state which, despite being derived from a crystal configuration of particles, describes very reasonably the equation of state of the 6-atic liquid-crystal phase at packing fractions not very close from the isotropic-6-atic bifurcation. Also, the same equation of state performs well when compared to that from MC simulations for the stable crystal phase. The agreement can even be improved by selecting adequate values for the angle of chirality. Despite the success of two versions of the theory, we show that the free energy is an increasing function of the angle of chirality, implying that the most stable phase is the achiral phase. Furthermore, we show that possible clustering effects, such as the formation of perfect chiral hexagonal clusters, which in turn crystallize into an hexagonal lattice, cannot explain the presence of the chirality observed in simulations.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054701"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054701","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
We derive several versions of the cell theory for a crystal phase of hard equilateral triangles. To that purpose we analytically calculated the free area of a frozen oriented or freely rotating particle inside the cavity formed by its neighbors in a chiral configuration of their orientations. From the most successful versions of the theory we predict an equation of state which, despite being derived from a crystal configuration of particles, describes very reasonably the equation of state of the 6-atic liquid-crystal phase at packing fractions not very close from the isotropic-6-atic bifurcation. Also, the same equation of state performs well when compared to that from MC simulations for the stable crystal phase. The agreement can even be improved by selecting adequate values for the angle of chirality. Despite the success of two versions of the theory, we show that the free energy is an increasing function of the angle of chirality, implying that the most stable phase is the achiral phase. Furthermore, we show that possible clustering effects, such as the formation of perfect chiral hexagonal clusters, which in turn crystallize into an hexagonal lattice, cannot explain the presence of the chirality observed in simulations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.