The influence of Sm2O3 dopant on structure, morphology and transport critical current density of MgB2 wires investigated by using the transmission electron microscope
Daniel Gajda, Michał Babij, Andrzej Zaleski, Doğan Avci, Fırat Karaboga, Hakan Yetis, Ibrahim Belenli, Dariusz Zasada, Damian Szymański, Małgorzata Małecka, Wojciech Gil, Tomasz Czujko
{"title":"The influence of Sm2O3 dopant on structure, morphology and transport critical current density of MgB2 wires investigated by using the transmission electron microscope","authors":"Daniel Gajda, Michał Babij, Andrzej Zaleski, Doğan Avci, Fırat Karaboga, Hakan Yetis, Ibrahim Belenli, Dariusz Zasada, Damian Szymański, Małgorzata Małecka, Wojciech Gil, Tomasz Czujko","doi":"10.1016/j.jma.2024.12.009","DOIUrl":null,"url":null,"abstract":"This study reports results for the morphology, crystal structure and critical parameters of Sm<sub>2</sub>O<sub>3</sub>-doped MgB<sub>2</sub> wires with low and high initial filling densities. The transmission electron microscope (TEM) images were done for the longitudinal section of MgB<sub>2</sub> wires. The results show that the Sm<sub>2</sub>O<sub>3</sub> admixture significantly changes the morphology of the MgB<sub>2</sub> material, accelerates the formation of the MgB<sub>2</sub> phase, does not form rectangular MgB<sub>2</sub> crystallites, does not leave pure Mg, and forms Sm<sub>2</sub>O<sub>3</sub> areas of 10 nm and 20 nm. The effects of Sm<sub>2</sub>O<sub>3</sub> addition on MgB<sub>2</sub> formation in superconducting wires were revealed in detail in this study. Additionally, Sm<sub>2</sub>O<sub>3</sub> causes the formation of point pinning regions that significantly increase the critical transport current density at the temperature range from 15 K to 30 K. The TEM images point out that rectangular MgB<sub>2</sub> crystallites are formed in undoped MgB<sub>2</sub> wires, which have not been previously reported. XRPD results showed that short-term heating allowed obtaining a larger amount of MgB<sub>2</sub> phase for the MgB<sub>2</sub> wire with high initial filling density. On the other hand, long heating time and high initial density slow down the creation of MgB<sub>2</sub> phase when the Mg is in the solid state.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports results for the morphology, crystal structure and critical parameters of Sm2O3-doped MgB2 wires with low and high initial filling densities. The transmission electron microscope (TEM) images were done for the longitudinal section of MgB2 wires. The results show that the Sm2O3 admixture significantly changes the morphology of the MgB2 material, accelerates the formation of the MgB2 phase, does not form rectangular MgB2 crystallites, does not leave pure Mg, and forms Sm2O3 areas of 10 nm and 20 nm. The effects of Sm2O3 addition on MgB2 formation in superconducting wires were revealed in detail in this study. Additionally, Sm2O3 causes the formation of point pinning regions that significantly increase the critical transport current density at the temperature range from 15 K to 30 K. The TEM images point out that rectangular MgB2 crystallites are formed in undoped MgB2 wires, which have not been previously reported. XRPD results showed that short-term heating allowed obtaining a larger amount of MgB2 phase for the MgB2 wire with high initial filling density. On the other hand, long heating time and high initial density slow down the creation of MgB2 phase when the Mg is in the solid state.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.