Effects of the grain temperature distribution on the organic chemistry of protostellar envelopes

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-12-18 DOI:10.1051/0004-6361/202451858
Juris Kalvāns, Juris Freimanis
{"title":"Effects of the grain temperature distribution on the organic chemistry of protostellar envelopes","authors":"Juris Kalvāns, Juris Freimanis","doi":"10.1051/0004-6361/202451858","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Dust grains in circumstellar envelopes are likely to have a spread-out temperature distribution.<i>Aims.<i/> We investigate how trends in the temperature distribution between small and large grains affect the hot-corino chemistry of complex organic molecules (COMs) and warm carbon-chain chemistry (WCCC).<i>Methods.<i/> A multi-grain multi-layer astrochemical code with an advanced treatment of the surface chemistry was used with three grain-temperature trends: a grain temperature proportional to the grain radius to the power -1/6 (Model M-1/6), to 0 (M0), and to 1/6 (M1/6). The cases of hot-corino chemistry and WCCC were investigated for a total of six models. The essence of these changes is that the main ice reservoir (small grains) has a higher (M-1/6) or lower (M1/6) temperature than the surrounding gas.<i>Results.<i/> The chemistry of COMs agrees better with observations in models M-1/6 and M1/6 than in Model M0. Model M-1/6 agrees best for WCCC because earlier mass-evaporation of methane ice from small grains induces the WCCC phenomenon at lower temperatures.<i>Conclusions.<i/> Models considering several grain populations with different temperatures reproduce the circumstellar chemistry more precisely.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"18 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451858","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Dust grains in circumstellar envelopes are likely to have a spread-out temperature distribution.Aims. We investigate how trends in the temperature distribution between small and large grains affect the hot-corino chemistry of complex organic molecules (COMs) and warm carbon-chain chemistry (WCCC).Methods. A multi-grain multi-layer astrochemical code with an advanced treatment of the surface chemistry was used with three grain-temperature trends: a grain temperature proportional to the grain radius to the power -1/6 (Model M-1/6), to 0 (M0), and to 1/6 (M1/6). The cases of hot-corino chemistry and WCCC were investigated for a total of six models. The essence of these changes is that the main ice reservoir (small grains) has a higher (M-1/6) or lower (M1/6) temperature than the surrounding gas.Results. The chemistry of COMs agrees better with observations in models M-1/6 and M1/6 than in Model M0. Model M-1/6 agrees best for WCCC because earlier mass-evaporation of methane ice from small grains induces the WCCC phenomenon at lower temperatures.Conclusions. Models considering several grain populations with different temperatures reproduce the circumstellar chemistry more precisely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Spatial distributions of extreme-ultraviolet brightenings in the quiet Sun Time evolution of o-H2D+, N2D+, and N2H+ during the high-mass star formation process Effects of the grain temperature distribution on the organic chemistry of protostellar envelopes Characterizing Jupiter’s interior using machine learning reveals four key structures Unveiling the ice and gas nature of active centaur (2060) Chiron using the James Webb Space Telescope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1