CitySEIRCast: an agent-based city digital twin for pandemic analysis and simulation

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-12-19 DOI:10.1007/s40747-024-01683-x
Shakir Bilal, Wajdi Zaatour, Yilian Alonso Otano, Arindam Saha, Ken Newcomb, Soo Kim, Jun Kim, Raveena Ginjala, Derek Groen, Edwin Michael
{"title":"CitySEIRCast: an agent-based city digital twin for pandemic analysis and simulation","authors":"Shakir Bilal, Wajdi Zaatour, Yilian Alonso Otano, Arindam Saha, Ken Newcomb, Soo Kim, Jun Kim, Raveena Ginjala, Derek Groen, Edwin Michael","doi":"10.1007/s40747-024-01683-x","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic has dramatically highlighted the importance of developing simulation systems for quickly characterizing and providing spatio-temporal forecasts of infection spread dynamics that take specific accounts of the population and spatial heterogeneities that govern pathogen transmission in real-world communities. Developing such computational systems must also overcome the cold-start problem related to the inevitable scarce early data and extant knowledge regarding a novel pathogen’s transmissibility and virulence, while addressing changing population behavior and policy options as a pandemic evolves. Here, we describe how we have coupled advances in the construction of digital or virtual models of real-world cities with an agile, modular, agent-based model of viral transmission and data from navigation and social media interactions, to overcome these challenges in order to provide a new simulation tool, CitySEIRCast, that can model viral spread at the sub-national level. Our data pipelines and workflows are designed purposefully to be flexible and scalable so that we can implement the system on hybrid cloud/cluster systems and be agile enough to address different population settings and indeed, diseases. Our simulation results demonstrate that CitySEIRCast can provide the timely high resolution spatio-temporal epidemic predictions required for supporting situational awareness of the state of a pandemic as well as for facilitating assessments of vulnerable sub-populations and locations and evaluations of the impacts of implemented interventions, inclusive of the effects of population behavioral response to fluctuations in case incidence. This work arose in response to requests from county agencies to support their work on COVID-19 monitoring, risk assessment, and planning, and using the described workflows, we were able to provide uninterrupted bi-weekly simulations to guide their efforts for over a year from late 2021 to 2023. We discuss future work that can significantly improve the scalability and real-time application of this digital city-based epidemic modelling system, such that validated predictions and forecasts of the paths that may followed by a contagion both over time and space can be used to anticipate the spread dynamics, risky groups and regions, and options for responding effectively to a complex epidemic.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01683-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has dramatically highlighted the importance of developing simulation systems for quickly characterizing and providing spatio-temporal forecasts of infection spread dynamics that take specific accounts of the population and spatial heterogeneities that govern pathogen transmission in real-world communities. Developing such computational systems must also overcome the cold-start problem related to the inevitable scarce early data and extant knowledge regarding a novel pathogen’s transmissibility and virulence, while addressing changing population behavior and policy options as a pandemic evolves. Here, we describe how we have coupled advances in the construction of digital or virtual models of real-world cities with an agile, modular, agent-based model of viral transmission and data from navigation and social media interactions, to overcome these challenges in order to provide a new simulation tool, CitySEIRCast, that can model viral spread at the sub-national level. Our data pipelines and workflows are designed purposefully to be flexible and scalable so that we can implement the system on hybrid cloud/cluster systems and be agile enough to address different population settings and indeed, diseases. Our simulation results demonstrate that CitySEIRCast can provide the timely high resolution spatio-temporal epidemic predictions required for supporting situational awareness of the state of a pandemic as well as for facilitating assessments of vulnerable sub-populations and locations and evaluations of the impacts of implemented interventions, inclusive of the effects of population behavioral response to fluctuations in case incidence. This work arose in response to requests from county agencies to support their work on COVID-19 monitoring, risk assessment, and planning, and using the described workflows, we were able to provide uninterrupted bi-weekly simulations to guide their efforts for over a year from late 2021 to 2023. We discuss future work that can significantly improve the scalability and real-time application of this digital city-based epidemic modelling system, such that validated predictions and forecasts of the paths that may followed by a contagion both over time and space can be used to anticipate the spread dynamics, risky groups and regions, and options for responding effectively to a complex epidemic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CitySEIRCast:基于代理的城市数字孪生,用于流行病分析和模拟
2019冠状病毒病大流行极大地突出了开发模拟系统的重要性,以快速表征和提供感染传播动态的时空预测,具体考虑到现实世界社区中控制病原体传播的人口和空间异质性。开发这样的计算系统还必须克服冷启动问题,该问题与关于新型病原体的传播性和毒性的不可避免的早期数据和现有知识匮乏有关,同时应对随着大流行的演变而不断变化的人口行为和政策选择。在这里,我们描述了我们如何将现实世界城市的数字或虚拟模型建设与敏捷、模块化、基于代理的病毒传播模型以及导航和社交媒体互动数据相结合,以克服这些挑战,从而提供一种新的模拟工具CitySEIRCast,可以在次国家层面模拟病毒传播。我们的数据管道和工作流程的设计是灵活的和可扩展的,这样我们就可以在混合云/集群系统上实现系统,并且足够敏捷,可以应对不同的人群环境,甚至是疾病。我们的模拟结果表明,CitySEIRCast可以提供及时的高分辨率时空流行病预测,以支持对大流行状态的态势感知,并促进对弱势亚群体和地点的评估,以及评估实施干预措施的影响,包括人群对病例发病率波动的行为反应的影响。这项工作是应县机构要求支持其COVID-19监测、风险评估和规划工作的要求而开展的,使用所描述的工作流程,我们能够提供不间断的两周模拟,以指导他们从2021年底到2023年的一年多时间内的工作。我们讨论了未来的工作,这些工作可以显著提高这种基于数字城市的流行病建模系统的可扩展性和实时应用,这样,对传染病在时间和空间上可能遵循的路径的有效预测和预测,可以用来预测传播动态、风险群体和地区,以及有效应对复杂流行病的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1