Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-02-19 DOI:10.1007/s40747-025-01802-2
Feilong Huang, Zide Fan, Xiaohe Li, Wenhui Zhang, Pengfei Li, Ying Geng, Keqing Zhu
{"title":"Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction","authors":"Feilong Huang, Zide Fan, Xiaohe Li, Wenhui Zhang, Pengfei Li, Ying Geng, Keqing Zhu","doi":"10.1007/s40747-025-01802-2","DOIUrl":null,"url":null,"abstract":"<p>Trajectory prediction has become increasingly critical in various applications such as autonomous driving and robotic navigation. However, due to the significant variations in trajectory patterns across different scenarios, models trained in known environments often falter in unseen ones. To learn a generalized model that can directly handle unseen domains without requiring any model updating, we propose a novel tailored meta-learning-based trajectory prediction model called DTM. Our approach integrates a dual trajectory transformer (Dual_TT) equipped with an agent-consistency loss, facilitating a comprehensive exploration of both individual intentions and group dynamics across diverse scenarios. Building on this, we propose a tailored meta-learning framework (TMG) to simulate the generalization process between source and target domains during the training phase. In the task construction phase, we employ multi-dimensional labels to precisely define and distinguish between different domains. During the dual-phase parameter update, we partially fix crucial attention mechanism parameters and apply an attention alignment loss to harmonize domain-invariant and specific features. We also incorporate a Serial and Parallel Training (SPT) strategy to significantly enhance task processing and the model’s adaptability to domain shifts. Extensive testing across various domains demonstrates that our DTM model not only outperforms existing top-performing baselines on real-world datasets but also validates the effectiveness of our design through ablation studies.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01802-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory prediction has become increasingly critical in various applications such as autonomous driving and robotic navigation. However, due to the significant variations in trajectory patterns across different scenarios, models trained in known environments often falter in unseen ones. To learn a generalized model that can directly handle unseen domains without requiring any model updating, we propose a novel tailored meta-learning-based trajectory prediction model called DTM. Our approach integrates a dual trajectory transformer (Dual_TT) equipped with an agent-consistency loss, facilitating a comprehensive exploration of both individual intentions and group dynamics across diverse scenarios. Building on this, we propose a tailored meta-learning framework (TMG) to simulate the generalization process between source and target domains during the training phase. In the task construction phase, we employ multi-dimensional labels to precisely define and distinguish between different domains. During the dual-phase parameter update, we partially fix crucial attention mechanism parameters and apply an attention alignment loss to harmonize domain-invariant and specific features. We also incorporate a Serial and Parallel Training (SPT) strategy to significantly enhance task processing and the model’s adaptability to domain shifts. Extensive testing across various domains demonstrates that our DTM model not only outperforms existing top-performing baselines on real-world datasets but also validates the effectiveness of our design through ablation studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1