{"title":"Control strategy of robotic manipulator based on multi-task reinforcement learning","authors":"Tao Wang, Ziming Ruan, Yuyan Wang, Chong Chen","doi":"10.1007/s40747-025-01816-w","DOIUrl":null,"url":null,"abstract":"<p>Multi-task learning is important in reinforcement learning where simultaneously training across different tasks allows for leveraging shared information among them, typically leading to better performance than single-task learning. While joint training of multiple tasks permits parameter sharing between tasks, the optimization challenge becomes crucial—identifying which parameters should be reused and managing potential gradient conflicts arising from different tasks. To tackle this issue, instead of uniform parameter sharing, we propose an adjudicate reconfiguration network model, which we integrate into the Soft Actor-Critic (SAC) algorithm to address the optimization problems brought about by parameter sharing in multi-task reinforcement learning algorithms. The decision reconstruction network model is designed to achieve cross-network layer information exchange between network layers by dynamically adjusting and reconfiguring the network hierarchy, which can overcome the inherent limitations of traditional network architecture in handling multitasking scenarios. The SAC algorithm based on the decision reconstruction network model can achieve simultaneous training in multiple tasks, effectively learning and integrating relevant knowledge of each task. Finally, the proposed algorithm is evaluated in a multi-task environment of the Meta-World, a benchmark for multi-task reinforcement learning containing robotic manipulation tasks, and the multi-task MUJOCO environment.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"5 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01816-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-task learning is important in reinforcement learning where simultaneously training across different tasks allows for leveraging shared information among them, typically leading to better performance than single-task learning. While joint training of multiple tasks permits parameter sharing between tasks, the optimization challenge becomes crucial—identifying which parameters should be reused and managing potential gradient conflicts arising from different tasks. To tackle this issue, instead of uniform parameter sharing, we propose an adjudicate reconfiguration network model, which we integrate into the Soft Actor-Critic (SAC) algorithm to address the optimization problems brought about by parameter sharing in multi-task reinforcement learning algorithms. The decision reconstruction network model is designed to achieve cross-network layer information exchange between network layers by dynamically adjusting and reconfiguring the network hierarchy, which can overcome the inherent limitations of traditional network architecture in handling multitasking scenarios. The SAC algorithm based on the decision reconstruction network model can achieve simultaneous training in multiple tasks, effectively learning and integrating relevant knowledge of each task. Finally, the proposed algorithm is evaluated in a multi-task environment of the Meta-World, a benchmark for multi-task reinforcement learning containing robotic manipulation tasks, and the multi-task MUJOCO environment.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.