The radiative torque spin-up efficiency of ballistic dust-grain aggregates

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-12-17 DOI:10.1051/0004-6361/202451435
Jonathan A. Jäger, Stefan Reissl, Ralf S. Klessen
{"title":"The radiative torque spin-up efficiency of ballistic dust-grain aggregates","authors":"Jonathan A. Jäger, Stefan Reissl, Ralf S. Klessen","doi":"10.1051/0004-6361/202451435","DOIUrl":null,"url":null,"abstract":"<i>Aims.<i/> It is quintessential for the analysis of the observed dust polarization signal to understand the rotational dynamics of interstellar dust grains. Additionally, high rotation velocities may rotationally disrupt the grains, which impacts the grain-size distribution. We aim to constrain the set of parameters for an accurate description of the rotational spin-up process of ballistic dust grain aggregates driven by radiative torques (RATs).<i>Methods.<i/> We modeled the dust grains as complex fractal aggregates grown by the ballistic aggregation of uniform spherical particles (monomers) of different sizes. A broad variation of dust materials, shapes, and sizes were studied in the presence of different radiation sources.<i>Results.<i/> We find that the canonical parameterization for the torque efficiency overestimates the maximum angular velocity <i>ω<i/><sub>RAT<sub/> caused by RATs acting on ballistic grain aggregates. To resolve this problem, we propose a new parameterization that predicts <i>ω<i/><sub>RAT<sub/> more accurately. We find that RATs are most efficient for larger grains with a lower monomer density. This manifests itself as a size- and monomer-density dependence in the constant part of the parameterization. Following the constant part, the parameterization has two power laws with different slopes that retain universality for all grain sizes. The maximum grain rotation does not scale linearly with radiation strength because different drag mechanisms dominate, depending on the grain material and environment. The angular velocity <i>ω<i/><sub>RAT<sub/> of individual single dust grains has a wide distribution and may even differ from the mean by up to two orders of magnitude. Even though ballistic aggregates have a lower RAT efficiency, strong sources of radiation (stronger than ≈100 times the typical interstellar radiation field) may still produce rotation velocities high enough to cause the rotational disruption of dust grains.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"27 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451435","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims. It is quintessential for the analysis of the observed dust polarization signal to understand the rotational dynamics of interstellar dust grains. Additionally, high rotation velocities may rotationally disrupt the grains, which impacts the grain-size distribution. We aim to constrain the set of parameters for an accurate description of the rotational spin-up process of ballistic dust grain aggregates driven by radiative torques (RATs).Methods. We modeled the dust grains as complex fractal aggregates grown by the ballistic aggregation of uniform spherical particles (monomers) of different sizes. A broad variation of dust materials, shapes, and sizes were studied in the presence of different radiation sources.Results. We find that the canonical parameterization for the torque efficiency overestimates the maximum angular velocity ωRAT caused by RATs acting on ballistic grain aggregates. To resolve this problem, we propose a new parameterization that predicts ωRAT more accurately. We find that RATs are most efficient for larger grains with a lower monomer density. This manifests itself as a size- and monomer-density dependence in the constant part of the parameterization. Following the constant part, the parameterization has two power laws with different slopes that retain universality for all grain sizes. The maximum grain rotation does not scale linearly with radiation strength because different drag mechanisms dominate, depending on the grain material and environment. The angular velocity ωRAT of individual single dust grains has a wide distribution and may even differ from the mean by up to two orders of magnitude. Even though ballistic aggregates have a lower RAT efficiency, strong sources of radiation (stronger than ≈100 times the typical interstellar radiation field) may still produce rotation velocities high enough to cause the rotational disruption of dust grains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1