{"title":"Wireless Passive Sensor Design Based on a Highly Stable Triboelectric Nanogenerator for Centralized Command of Diverse Electrical Appliances","authors":"Xinru Sun, Yonghui Wu, Zifa Wang, Feng Wang, Yiqiao Zhao, Xiaoyao Wang, Yunchen Zhang, Tianyong Ao, Fangqi Chen, Haiwu Zheng","doi":"10.1016/j.nanoen.2024.110598","DOIUrl":null,"url":null,"abstract":"The adoption of energy harvesting technology enables wireless sensor nodes to be self-powered, thereby significantly enhancing the deployment flexibility of wireless sensor networks (WSNs). While WSNs utilizing triboelectric nanogenerators (TENGs) are recognized for their immense potential, further development is required to ensure their suitability in real-world applications. In this study, we construct a wireless passive intelligent sensing system based on a highly stable TENG and an LC oscillator circuit, where the sensing information is modulated onto the transmitted signal frequency via fixed or variable capacitive modulation. The sensing system consists of three main components: self-powered signal transmitters, a receiving system integrating a single receiver with a signal processing module, and strong electrical applications. This configuration achieves three-layer physical isolation within the power system, thereby enhancing electrical safety. A self-charge-pumping TENG combined with a gas discharge tube switch is deployed to construct the self-powered signal transmitter, aiming to improve the system's output stability. Signals sent by different transmitters with varying frequencies are received and processed by the receiving system, allowing distinct switching operations and enabling centralized control over multiple electrical devices via a single receiving end. This sensing system holds significant potential for widespread applications in smart homes and the Internet of Things within modern commercial and industrial contexts.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"23 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110598","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of energy harvesting technology enables wireless sensor nodes to be self-powered, thereby significantly enhancing the deployment flexibility of wireless sensor networks (WSNs). While WSNs utilizing triboelectric nanogenerators (TENGs) are recognized for their immense potential, further development is required to ensure their suitability in real-world applications. In this study, we construct a wireless passive intelligent sensing system based on a highly stable TENG and an LC oscillator circuit, where the sensing information is modulated onto the transmitted signal frequency via fixed or variable capacitive modulation. The sensing system consists of three main components: self-powered signal transmitters, a receiving system integrating a single receiver with a signal processing module, and strong electrical applications. This configuration achieves three-layer physical isolation within the power system, thereby enhancing electrical safety. A self-charge-pumping TENG combined with a gas discharge tube switch is deployed to construct the self-powered signal transmitter, aiming to improve the system's output stability. Signals sent by different transmitters with varying frequencies are received and processed by the receiving system, allowing distinct switching operations and enabling centralized control over multiple electrical devices via a single receiving end. This sensing system holds significant potential for widespread applications in smart homes and the Internet of Things within modern commercial and industrial contexts.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.