Machine learning helps reveal key factors affecting tire wear particulate matter emissions

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environment International Pub Date : 2024-12-19 DOI:10.1016/j.envint.2024.109224
Zhenyu Jia, Jiawei Yin, Tiange Fang, Zhiwen Jiang, Chongzhi Zhong, Zeping Cao, Lin Wu, Ning Wei, Zhengyu Men, Lei Yang, Qijun Zhang, Hongjun Mao
{"title":"Machine learning helps reveal key factors affecting tire wear particulate matter emissions","authors":"Zhenyu Jia, Jiawei Yin, Tiange Fang, Zhiwen Jiang, Chongzhi Zhong, Zeping Cao, Lin Wu, Ning Wei, Zhengyu Men, Lei Yang, Qijun Zhang, Hongjun Mao","doi":"10.1016/j.envint.2024.109224","DOIUrl":null,"url":null,"abstract":"Tire wear particles (TWPs) are generated with every rotation of the tire. However, obtaining TWPs under real driving conditions and revealing key factors affecting TWPs are challenging. In this study, we obtained a TWPs dataset by simulating tire wear process under real driving conditions using a tire wear simulator and custom-designed test conditions. This study shows that tire wear PM<sub>2.5</sub> accounts for about 65 % of PM<sub>10</sub>. The response relationship between TWP emissions (both PM<sub>2.5</sub> and PM<sub>2.5-10</sub>) and factors (the radial force, the lateral force, the tangential force, speed, driving torque, tire contact area, total contour length and tire tread temperature) was obtained by machine learning (ML) method. The random forest (RF) model was developed and displayed good prediction performance with an R<sup>2</sup> of 0.84 and 0.78 for PM<sub>2.5</sub> and PM<sub>2.5-10</sub> on the test set, respectively. Model-related (similarity network graph) and model-unrelated (partial dependence plots and centered-individual conditional expectation plots) explainability methods were used to break the black box of ML. Model explainability results show that the feature parameters-emission response relationships for tire wear PM<sub>2.5</sub> and PM<sub>2.5-10</sub> are different. Avoiding strenuous driving behaviors (TTF &lt; 400 N, TLF &lt; 400 N), reducing tread temperature (T &lt; 45℃), and minimizing the number of small tread patterns are feasible ways to reduce TWPs.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"259 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109224","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tire wear particles (TWPs) are generated with every rotation of the tire. However, obtaining TWPs under real driving conditions and revealing key factors affecting TWPs are challenging. In this study, we obtained a TWPs dataset by simulating tire wear process under real driving conditions using a tire wear simulator and custom-designed test conditions. This study shows that tire wear PM2.5 accounts for about 65 % of PM10. The response relationship between TWP emissions (both PM2.5 and PM2.5-10) and factors (the radial force, the lateral force, the tangential force, speed, driving torque, tire contact area, total contour length and tire tread temperature) was obtained by machine learning (ML) method. The random forest (RF) model was developed and displayed good prediction performance with an R2 of 0.84 and 0.78 for PM2.5 and PM2.5-10 on the test set, respectively. Model-related (similarity network graph) and model-unrelated (partial dependence plots and centered-individual conditional expectation plots) explainability methods were used to break the black box of ML. Model explainability results show that the feature parameters-emission response relationships for tire wear PM2.5 and PM2.5-10 are different. Avoiding strenuous driving behaviors (TTF < 400 N, TLF < 400 N), reducing tread temperature (T < 45℃), and minimizing the number of small tread patterns are feasible ways to reduce TWPs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
期刊最新文献
Machine learning helps reveal key factors affecting tire wear particulate matter emissions The impact of long-term exposure to NO2, O3, and their oxidative potential on adolescents’ mental health, and the protective role of school-based greenness Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank Unraveling the degradation mechanism of multiple pyrethroid insecticides by Pseudomonas aeruginosa and its environmental bioremediation potential Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1