Shuhui Cai, Kaixian Qi, Saihong Yang, Jie Fang, Pingyuan Shi, Zhongshan Shen, Min Zhang, Huafeng Qin, Chi Zhang, Xiaoguang Li, Fangfang Chen, Yi Chen, Jinhua Li, Huaiyu He, Chenglong Deng, Chunlai Li, Yongxin Pan, Rixiang Zhu
{"title":"A reinforced lunar dynamo recorded by Chang'e-6 farside basalt","authors":"Shuhui Cai, Kaixian Qi, Saihong Yang, Jie Fang, Pingyuan Shi, Zhongshan Shen, Min Zhang, Huafeng Qin, Chi Zhang, Xiaoguang Li, Fangfang Chen, Yi Chen, Jinhua Li, Huaiyu He, Chenglong Deng, Chunlai Li, Yongxin Pan, Rixiang Zhu","doi":"10.1038/s41586-024-08526-2","DOIUrl":null,"url":null,"abstract":"<p>The evolution of the lunar dynamo is essential for deciphering the deep interior structure, thermal history, and surface environment of the Moon<sup>1-4</sup>. Previous palaeomagnetic investigations on samples returned from the nearside of the Moon have established the general variation of the lunar magnetic field<sup>5-7</sup>. However, limited spatial and temporal palaeomagnetic constraints leave the evolution of the lunar dynamo ambiguous. The Chang'e-6 mission returned the first farside basalts dated at ca. 2.8 billion years ago (Ga)<sup>8,9</sup>, offering a unique opportunity to investigate a critical spatiotemporal gap in the evolution of the global lunar dynamo. Here we report palaeointensities (~5–21 μT) recovered from the Chang’e-6 basalts, providing the first constraint on the magnetic field from the lunar farside and a critical anchor within the large gap between 3 and 2 Ga. The new results record a rebound of the field strength after its prior sharp decline around 3.1 Ga, which attests to an active lunar dynamo at ca. 2.8 Ga in the mid-early stage and argues against the suggestion that the lunar dynamo may have remained in a low-energy state after 3 Ga until its demise. The result suggests the lunar dynamo was most likely driven by either a basal magma ocean and/or precession, probably supplemented by other mechanisms such as core crystallisation.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"86 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08526-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of the lunar dynamo is essential for deciphering the deep interior structure, thermal history, and surface environment of the Moon1-4. Previous palaeomagnetic investigations on samples returned from the nearside of the Moon have established the general variation of the lunar magnetic field5-7. However, limited spatial and temporal palaeomagnetic constraints leave the evolution of the lunar dynamo ambiguous. The Chang'e-6 mission returned the first farside basalts dated at ca. 2.8 billion years ago (Ga)8,9, offering a unique opportunity to investigate a critical spatiotemporal gap in the evolution of the global lunar dynamo. Here we report palaeointensities (~5–21 μT) recovered from the Chang’e-6 basalts, providing the first constraint on the magnetic field from the lunar farside and a critical anchor within the large gap between 3 and 2 Ga. The new results record a rebound of the field strength after its prior sharp decline around 3.1 Ga, which attests to an active lunar dynamo at ca. 2.8 Ga in the mid-early stage and argues against the suggestion that the lunar dynamo may have remained in a low-energy state after 3 Ga until its demise. The result suggests the lunar dynamo was most likely driven by either a basal magma ocean and/or precession, probably supplemented by other mechanisms such as core crystallisation.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.