A reinforced lunar dynamo recorded by Chang'e-6 farside basalt

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-12-19 DOI:10.1038/s41586-024-08526-2
Shuhui Cai, Kaixian Qi, Saihong Yang, Jie Fang, Pingyuan Shi, Zhongshan Shen, Min Zhang, Huafeng Qin, Chi Zhang, Xiaoguang Li, Fangfang Chen, Yi Chen, Jinhua Li, Huaiyu He, Chenglong Deng, Chunlai Li, Yongxin Pan, Rixiang Zhu
{"title":"A reinforced lunar dynamo recorded by Chang'e-6 farside basalt","authors":"Shuhui Cai, Kaixian Qi, Saihong Yang, Jie Fang, Pingyuan Shi, Zhongshan Shen, Min Zhang, Huafeng Qin, Chi Zhang, Xiaoguang Li, Fangfang Chen, Yi Chen, Jinhua Li, Huaiyu He, Chenglong Deng, Chunlai Li, Yongxin Pan, Rixiang Zhu","doi":"10.1038/s41586-024-08526-2","DOIUrl":null,"url":null,"abstract":"<p>The evolution of the lunar dynamo is essential for deciphering the deep interior structure, thermal history, and surface environment of the Moon<sup>1-4</sup>. Previous palaeomagnetic investigations on samples returned from the nearside of the Moon have established the general variation of the lunar magnetic field<sup>5-7</sup>. However, limited spatial and temporal palaeomagnetic constraints leave the evolution of the lunar dynamo ambiguous. The Chang'e-6 mission returned the first farside basalts dated at ca. 2.8 billion years ago (Ga)<sup>8,9</sup>, offering a unique opportunity to investigate a critical spatiotemporal gap in the evolution of the global lunar dynamo. Here we report palaeointensities (~5–21 μT) recovered from the Chang’e-6 basalts, providing the first constraint on the magnetic field from the lunar farside and a critical anchor within the large gap between 3 and 2 Ga. The new results record a rebound of the field strength after its prior sharp decline around 3.1 Ga, which attests to an active lunar dynamo at ca. 2.8 Ga in the mid-early stage and argues against the suggestion that the lunar dynamo may have remained in a low-energy state after 3 Ga until its demise. The result suggests the lunar dynamo was most likely driven by either a basal magma ocean and/or precession, probably supplemented by other mechanisms such as core crystallisation.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"86 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08526-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of the lunar dynamo is essential for deciphering the deep interior structure, thermal history, and surface environment of the Moon1-4. Previous palaeomagnetic investigations on samples returned from the nearside of the Moon have established the general variation of the lunar magnetic field5-7. However, limited spatial and temporal palaeomagnetic constraints leave the evolution of the lunar dynamo ambiguous. The Chang'e-6 mission returned the first farside basalts dated at ca. 2.8 billion years ago (Ga)8,9, offering a unique opportunity to investigate a critical spatiotemporal gap in the evolution of the global lunar dynamo. Here we report palaeointensities (~5–21 μT) recovered from the Chang’e-6 basalts, providing the first constraint on the magnetic field from the lunar farside and a critical anchor within the large gap between 3 and 2 Ga. The new results record a rebound of the field strength after its prior sharp decline around 3.1 Ga, which attests to an active lunar dynamo at ca. 2.8 Ga in the mid-early stage and argues against the suggestion that the lunar dynamo may have remained in a low-energy state after 3 Ga until its demise. The result suggests the lunar dynamo was most likely driven by either a basal magma ocean and/or precession, probably supplemented by other mechanisms such as core crystallisation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嫦娥六号远侧玄武岩记录的强化月球发电机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Signatures of ambient pressure superconductivity in thin film La3Ni2O7 A reinforced lunar dynamo recorded by Chang'e-6 farside basalt A blood test detects aged cells Humans evolved for distance running – but ancestor ‘Lucy’ didn’t go far or fast Humanity’s noise is the natural world’s enemy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1