Keir A. Nichols, Jonathan R. Adams, Katie Brown, Roger C. Creel, Marion A. McKenzie, Ryan A. Venturelli, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, John Woodward, Stephen J. Roberts
{"title":"Direct Geologic Constraints on the Timing of Late Holocene Ice Thickening in the Amundsen Sea Embayment, Antarctica","authors":"Keir A. Nichols, Jonathan R. Adams, Katie Brown, Roger C. Creel, Marion A. McKenzie, Ryan A. Venturelli, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, John Woodward, Stephen J. Roberts","doi":"10.1029/2024gl110350","DOIUrl":null,"url":null,"abstract":"Constraining past West Antarctic Ice Sheet (WAIS) change helps validate numerical models simulating future ice sheet dynamics. Following rapid deglaciation during the mid-Holocene, ice near Thwaites Glacier was ∼35 m thinner than present; however, the timing of ice regrowth to its present configuration remains unknown. To fill this knowledge gap, we present cosmogenic nuclide exposure ages of cobbles from the surface of a moraine situated between Thwaites and Pope glaciers. We infer that the moraine formed and stabilized in the Late Holocene (∼1.4 ka) when a small glacier thickened. We also present a novel reconstruction of WAIS volume constrained by sea-level data, which demonstrates that moraine formation coincided with a large-scale WAIS readvance. Our new geologic constraints will help inform models of the solid Earth response to surface mass loading, improving our understanding of ice sheet dynamics in a vulnerable part of WAIS.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"29 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110350","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Constraining past West Antarctic Ice Sheet (WAIS) change helps validate numerical models simulating future ice sheet dynamics. Following rapid deglaciation during the mid-Holocene, ice near Thwaites Glacier was ∼35 m thinner than present; however, the timing of ice regrowth to its present configuration remains unknown. To fill this knowledge gap, we present cosmogenic nuclide exposure ages of cobbles from the surface of a moraine situated between Thwaites and Pope glaciers. We infer that the moraine formed and stabilized in the Late Holocene (∼1.4 ka) when a small glacier thickened. We also present a novel reconstruction of WAIS volume constrained by sea-level data, which demonstrates that moraine formation coincided with a large-scale WAIS readvance. Our new geologic constraints will help inform models of the solid Earth response to surface mass loading, improving our understanding of ice sheet dynamics in a vulnerable part of WAIS.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.