Mineral and Microbial Properties Drive the Formation of Mineral-Associated Organic Matter and Its Response to Increased Temperature

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2024-12-19 DOI:10.1111/gcb.70004
Jianing Zhao, Xuehui Feng, Jie Hu, Mei He, Siyu Wang, Yuanhe Yang, Leiyi Chen
{"title":"Mineral and Microbial Properties Drive the Formation of Mineral-Associated Organic Matter and Its Response to Increased Temperature","authors":"Jianing Zhao,&nbsp;Xuehui Feng,&nbsp;Jie Hu,&nbsp;Mei He,&nbsp;Siyu Wang,&nbsp;Yuanhe Yang,&nbsp;Leiyi Chen","doi":"10.1111/gcb.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A comprehensive understanding of the formation of mineral-associated organic matter (MAOM) is a prerequisite for the sustainable management of soil carbon (C) and the development of effective long-term strategies for C sequestration in soils. Nevertheless, the precise manner by which microbial and mineral properties drive MAOM formation efficiency and its subsequent response to elevated temperature at the regional scale remains unclear. Here, we employed isotopically labelled laboratory incubations (at 15°C and 25°C) with soil samples from a ~3000 km transect across the Tibetan Plateau to elucidate the mechanisms underlying MAOM formation and its temperature response. The results indicated that both mineral protection and microbial properties were critical predictors of MAOM formation across the geographic gradient. The efficiency of MAOM formation was found to increase with the content of iron (Fe) oxides and their reactivity [i.e., the ratio of poorly crystalline Fe oxides to total Fe oxides (Fe<sub>o</sub>:Fe<sub>d</sub>)] but to decrease with the relative abundance of <i>Gammaproteobacteria</i> and <i>Actinobacteria</i> across the plateau. Moreover, a notable decline in MAOM formation efficiency was observed under elevated temperatures, which was concomitant with a reduction in the content and reactivity of Fe oxides, as well as the microbial assimilation of the labelled substrate. The attenuation of mineral–organic associations was identified as the primary factor contributing to the warming-induced reduction in MAOM formation. These findings highlight the necessity of incorporating organo–mineral associations and microbial properties into Earth System Models to accurately project soil C dynamics under changing climate.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 12","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70004","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive understanding of the formation of mineral-associated organic matter (MAOM) is a prerequisite for the sustainable management of soil carbon (C) and the development of effective long-term strategies for C sequestration in soils. Nevertheless, the precise manner by which microbial and mineral properties drive MAOM formation efficiency and its subsequent response to elevated temperature at the regional scale remains unclear. Here, we employed isotopically labelled laboratory incubations (at 15°C and 25°C) with soil samples from a ~3000 km transect across the Tibetan Plateau to elucidate the mechanisms underlying MAOM formation and its temperature response. The results indicated that both mineral protection and microbial properties were critical predictors of MAOM formation across the geographic gradient. The efficiency of MAOM formation was found to increase with the content of iron (Fe) oxides and their reactivity [i.e., the ratio of poorly crystalline Fe oxides to total Fe oxides (Feo:Fed)] but to decrease with the relative abundance of Gammaproteobacteria and Actinobacteria across the plateau. Moreover, a notable decline in MAOM formation efficiency was observed under elevated temperatures, which was concomitant with a reduction in the content and reactivity of Fe oxides, as well as the microbial assimilation of the labelled substrate. The attenuation of mineral–organic associations was identified as the primary factor contributing to the warming-induced reduction in MAOM formation. These findings highlight the necessity of incorporating organo–mineral associations and microbial properties into Earth System Models to accurately project soil C dynamics under changing climate.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矿物和微生物特性推动矿物相关有机物的形成及其对温度升高的反应
全面了解矿物伴生有机质(MAOM)的形成是土壤碳(C)可持续管理和制定有效的土壤碳封存长期战略的先决条件。然而,微生物和矿物性质驱动MAOM地层效率的确切方式及其对区域范围内温度升高的响应尚不清楚。在这里,我们使用同位素标记的实验室培养(在15°C和25°C)与来自青藏高原约3000公里样带的土壤样品,以阐明MAOM形成的机制及其温度响应。结果表明,矿物保护和微生物性质是跨地理梯度MAOM形成的关键预测因子。MAOM的形成效率随着铁氧化物(Fe)的含量及其反应活性(即贫晶铁氧化物与总铁氧化物(Feo:Fed)的比例)的增加而增加,但随着高原上γ变形菌和放线菌的相对丰度的增加而降低。此外,在高温下观察到MAOM形成效率的显著下降,这与铁氧化物含量和反应性的降低以及标记底物的微生物同化有关。矿物-有机组合的衰减被认为是导致变暖导致MAOM形成减少的主要因素。这些发现强调了将有机矿物关联和微生物特性纳入地球系统模型以准确预测气候变化下土壤C动态的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1