Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-02-21 DOI:10.1111/gcb.70074
Xingda Sheng, Xiaojie Zuo, Lin Luo, Guanfeng Pang, Huawei Zhang, Kit Wayne Chew, Dongshun Fang, Binbin Chen, Mingjiang Wu
{"title":"Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming","authors":"Xingda Sheng,&nbsp;Xiaojie Zuo,&nbsp;Lin Luo,&nbsp;Guanfeng Pang,&nbsp;Huawei Zhang,&nbsp;Kit Wayne Chew,&nbsp;Dongshun Fang,&nbsp;Binbin Chen,&nbsp;Mingjiang Wu","doi":"10.1111/gcb.70074","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Because of the rising global temperatures, <i>Sargassum fusiforme</i> (Harvey) Setchell, a commercially valuable seaweed, has experienced reduced yield and quality due to high temperatures from marine heatwave events. However, the mechanisms underlying the effects of heatwave stress on <i>S. fusiforme</i> remain unclear. In this study, the mechanisms of heatwave stress on the carbon and nitrogen assimilation processes in <i>S. fusiforme</i> were analyzed. These results indicated that heatwave stress, especially at 30°C for 12 days, significantly increased the levels of hydrogen peroxide (83%), malondialdehyde (84.7%), and relative conductivity (16.5%) in algae, which suggested an increase in algal damage. Morphologically, heatwave stress damaged the thylakoid structure and reduced the photosynthetic efficiency of algae and accumulated NADPH, ATP, and α-ketoglutarate significantly, resulting in decreased content of mannitol, the photosynthetic product. Additionally, physiological and transcriptomic results revealed that heatwave stress inhibited the rate of nitrate absorption rate and the activities of the most enzymes associated with nitrogen accumulation, while significantly upregulating glutamate dehydrogenase (GDH), suggesting a crucial role for GDH in <i>S. fusiforme</i>'s adaptation to heatwave stress. In terms of amino acid composition, proline and alanine were the most sensitive to heatwave treatment. Moreover, under the natural heatwave environment simulation validation experiment, the algae showed the same physiological performance as under laboratory conditions. The results indicated that marine heatwave events increased oxidative damage in <i>S. fusiforme</i> and inhibited carbon and nitrogen absorption and assimilation, ultimately leading to negative effects on the growth of algae. Thus, in the context of rapid global warming exacerbating marine heatwave events, our study provides valuable insights for high-temperature-resistant breeding and ecological management in coastal aquaculture.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70074","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the rising global temperatures, Sargassum fusiforme (Harvey) Setchell, a commercially valuable seaweed, has experienced reduced yield and quality due to high temperatures from marine heatwave events. However, the mechanisms underlying the effects of heatwave stress on S. fusiforme remain unclear. In this study, the mechanisms of heatwave stress on the carbon and nitrogen assimilation processes in S. fusiforme were analyzed. These results indicated that heatwave stress, especially at 30°C for 12 days, significantly increased the levels of hydrogen peroxide (83%), malondialdehyde (84.7%), and relative conductivity (16.5%) in algae, which suggested an increase in algal damage. Morphologically, heatwave stress damaged the thylakoid structure and reduced the photosynthetic efficiency of algae and accumulated NADPH, ATP, and α-ketoglutarate significantly, resulting in decreased content of mannitol, the photosynthetic product. Additionally, physiological and transcriptomic results revealed that heatwave stress inhibited the rate of nitrate absorption rate and the activities of the most enzymes associated with nitrogen accumulation, while significantly upregulating glutamate dehydrogenase (GDH), suggesting a crucial role for GDH in S. fusiforme's adaptation to heatwave stress. In terms of amino acid composition, proline and alanine were the most sensitive to heatwave treatment. Moreover, under the natural heatwave environment simulation validation experiment, the algae showed the same physiological performance as under laboratory conditions. The results indicated that marine heatwave events increased oxidative damage in S. fusiforme and inhibited carbon and nitrogen absorption and assimilation, ultimately leading to negative effects on the growth of algae. Thus, in the context of rapid global warming exacerbating marine heatwave events, our study provides valuable insights for high-temperature-resistant breeding and ecological management in coastal aquaculture.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1