Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-12-19 DOI:10.1007/s13201-024-02334-9
Hadi Rezaei Rad, Hamed Ebrahimian, Abdolmajid Liaghat, Fatemeh Khalaji, Mahshid Shabani Arani
{"title":"Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters","authors":"Hadi Rezaei Rad,&nbsp;Hamed Ebrahimian,&nbsp;Abdolmajid Liaghat,&nbsp;Fatemeh Khalaji,&nbsp;Mahshid Shabani Arani","doi":"10.1007/s13201-024-02334-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research aimed to ascertain the Manning roughness coefficient (<i>n</i>) and explore the impact of various factors on it across different phases and irrigation events. The Manning’s <i>n</i> for furrow irrigation was determined in the advance, storage, and whole irrigation phases utilizing the SIPAR_ID model, Manning equation, and WinSRFR software, respectively. Parameters affecting the Manning’ <i>n</i> were identified through Pearson and Kendall tests. The study involved measuring the Manning’s <i>n</i> under six distinct inflow rates, classified as low and high flows. Three irrigation events (first to third), advance and storage phases, two irrigation intervals, and two soil textures (Clay loam and Silty clay loam) were considered. Results indicated that the Manning’s <i>n</i> ranged from 0.017 to 0.636, 0.015 to 0.317, and 0.015 to 0.34 in the advance, storage, and whole irrigation phases during the first to third irrigation events, with mean values of 0.083, 0.054, and 0.055, respectively. Higher roughness coefficients were observed in the advance phase. Additionally, findings suggested that if the advance phase is short relative to the total irrigation time, the Manning’s <i>n</i> from the advance phase can be applied to the whole irrigation event without separate consideration for storage phase roughness. Pearson and Kendall statistical tests revealed that the Manning roughness coefficient during the entire irrigation event was strongly correlated with advance time (r = 0.65, <i>p</i> &lt; 0.01) and moderately correlated with inflow and outflow rates, as well as initial soil moisture and cross-sectional flow area. A weak correlation was observed between the roughness coefficient and the furrow slope (r = 0.238). During the storage phase, advance time had the strongest positive correlation with roughness, while inflow rate had a weak negative correlation (r = −0.31). </p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02334-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02334-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to ascertain the Manning roughness coefficient (n) and explore the impact of various factors on it across different phases and irrigation events. The Manning’s n for furrow irrigation was determined in the advance, storage, and whole irrigation phases utilizing the SIPAR_ID model, Manning equation, and WinSRFR software, respectively. Parameters affecting the Manning’ n were identified through Pearson and Kendall tests. The study involved measuring the Manning’s n under six distinct inflow rates, classified as low and high flows. Three irrigation events (first to third), advance and storage phases, two irrigation intervals, and two soil textures (Clay loam and Silty clay loam) were considered. Results indicated that the Manning’s n ranged from 0.017 to 0.636, 0.015 to 0.317, and 0.015 to 0.34 in the advance, storage, and whole irrigation phases during the first to third irrigation events, with mean values of 0.083, 0.054, and 0.055, respectively. Higher roughness coefficients were observed in the advance phase. Additionally, findings suggested that if the advance phase is short relative to the total irrigation time, the Manning’s n from the advance phase can be applied to the whole irrigation event without separate consideration for storage phase roughness. Pearson and Kendall statistical tests revealed that the Manning roughness coefficient during the entire irrigation event was strongly correlated with advance time (r = 0.65, p < 0.01) and moderately correlated with inflow and outflow rates, as well as initial soil moisture and cross-sectional flow area. A weak correlation was observed between the roughness coefficient and the furrow slope (r = 0.238). During the storage phase, advance time had the strongest positive correlation with roughness, while inflow rate had a weak negative correlation (r = −0.31).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Assessing water demand and supply in the Upper Indus Basin using integrated hydrological modeling under varied socioeconomic scenarios Application of CuFe2O4/CuS as a new green magnetic nanocomposite in adsorption of tetracycline from aqueous solutions: mathematical models of thermodynamics, isotherms, and kinetics Analyzing the impact of non-Newtonian nanofluid flow on pollutant discharge concentration in wastewater management using an artificial computing approach Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters Evaluating basic household characteristics influencing domestic water demand in tropical environments: a comprehensive case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1