Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song
{"title":"Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage","authors":"Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song","doi":"10.1016/j.joule.2024.11.012","DOIUrl":null,"url":null,"abstract":"Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm<sup>−2</sup>. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Redox flow batteries (RFBs) are promising for long-duration grid-scale sustainable energy storage. The ion-exchange membrane is a key component that determines energy efficiency and cycling stability. However, it remains challenging to develop membranes with high ionic conductivity and high selectivity toward redox-active electrolytes. We report the development of ion-conductive polymer membranes with record-breaking energy efficiency. By incorporating triptycene into poly(ether-ether-ketone) and controlled sulfonation, the resulting intrinsically microporous polymer membranes form highly interconnected water channels that facilitate transport of charge-balancing ions, particularly hydroxide anions. These microporous membranes showed high ionic conductivity without compromising the selectivity toward redox-active species. The membranes enabled excellent performance in alkaline aqueous organic and zinc-iron flow batteries, demonstrating long-term stability, high power density, and an operational current density up to 700 mA cm−2. The membranes also improved performance in neutral pH aqueous RFBs with high capacity utilization and retention, enhanced energy efficiency, and boosted power density.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.