{"title":"Rapid one-pot synthesis of multifunctional UiO-66(Zr/Ce)-NH2 for detection and photocatalytic degradation of tetracycline","authors":"Chaoting Shi, Ninghan Tang, Shan Pu, Hui Xin, Lan Wu, Xiandeng Hou","doi":"10.1016/j.cej.2024.158621","DOIUrl":null,"url":null,"abstract":"Metal-Organic Frameworks (MOFs) have been widely used for the antibiotic pollution control. However, it remains a challenge to simple design and synthesis of multifunctional MOFs for sensing and degradation antibiotics. Herein, a multifunctional UiO-66(Zr/Ce)-NH<ce:inf loc=\"post\">2</ce:inf> ratiometric fluorescence sensing and photocatalytic degradation platform was rapidly and simply constructed at room temperature by a one-pot method using a dielectric barrier discharge device. The mixed-metal centers and mixed-ligands of this platform enabled effective ratiometric fluorescence sensing of tetracycline (TC), along with a visual fluorescence shift from blue to yellow-green color. The platform demonstrated a detection of TC ranged from 200 nM to 15 μM, with a detection limit of 43 nM. Moreover, the UiO-66(Zr/Ce)-NH<ce:inf loc=\"post\">2</ce:inf> exhibited strong light absorption and efficient photogenerated carrier separation, thus offering excellent degradation performance of TC compared with that of MOFs with single metal center, mixed ligands or mixed metal centers. The mechanism of fluorescence detection and potential charge transfer pathways by the UiO-66(Zr/Ce)-NH<ce:inf loc=\"post\">2</ce:inf> were analyzed. This work provided a new approach for the simple design and synthesis of multifunctional MOFs platforms.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"60 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158621","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-Organic Frameworks (MOFs) have been widely used for the antibiotic pollution control. However, it remains a challenge to simple design and synthesis of multifunctional MOFs for sensing and degradation antibiotics. Herein, a multifunctional UiO-66(Zr/Ce)-NH2 ratiometric fluorescence sensing and photocatalytic degradation platform was rapidly and simply constructed at room temperature by a one-pot method using a dielectric barrier discharge device. The mixed-metal centers and mixed-ligands of this platform enabled effective ratiometric fluorescence sensing of tetracycline (TC), along with a visual fluorescence shift from blue to yellow-green color. The platform demonstrated a detection of TC ranged from 200 nM to 15 μM, with a detection limit of 43 nM. Moreover, the UiO-66(Zr/Ce)-NH2 exhibited strong light absorption and efficient photogenerated carrier separation, thus offering excellent degradation performance of TC compared with that of MOFs with single metal center, mixed ligands or mixed metal centers. The mechanism of fluorescence detection and potential charge transfer pathways by the UiO-66(Zr/Ce)-NH2 were analyzed. This work provided a new approach for the simple design and synthesis of multifunctional MOFs platforms.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.