AABBA Graph Kernel: Atom-Atom, Bond-Bond, and Bond-Atom Autocorrelations for Machine Learning

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-11-24 DOI:10.1021/acs.jcim.4c0158310.1021/acs.jcim.4c01583
Lucía Morán-González, Jørn Eirik Betten, Hannes Kneiding and David Balcells*, 
{"title":"AABBA Graph Kernel: Atom-Atom, Bond-Bond, and Bond-Atom Autocorrelations for Machine Learning","authors":"Lucía Morán-González,&nbsp;Jørn Eirik Betten,&nbsp;Hannes Kneiding and David Balcells*,&nbsp;","doi":"10.1021/acs.jcim.4c0158310.1021/acs.jcim.4c01583","DOIUrl":null,"url":null,"abstract":"<p >Graphs are one of the most natural and powerful representations available for molecules; natural because they have an intuitive correspondence to skeletal formulas, the language used by chemists worldwide, and powerful, because they are highly expressive both globally (molecular topology) and locally (atom and bond properties). Graph kernels are used to transform molecular graphs into fixed-length vectors, which, based on their capacity of measuring similarity, can be used as fingerprints for machine learning (ML). To date, graph kernels have mostly focused on the atomic nodes of the graph. In this work, we developed a graph kernel based on atom-atom, bond-bond, and bond-atom (AABBA) autocorrelations. The resulting vector representations were tested on regression ML tasks on a data set of transition metal complexes; a benchmark motivated by the higher complexity of these compounds relative to organic molecules. In particular, we tested different flavors of the AABBA kernel in the prediction of the energy barriers and bond distances of the Vaska’s complex data set (Friederich et al., <i>Chem. Sci.</i>, 2020, <b>11,</b> 4584). For a variety of ML models, including neural networks, gradient boosting machines, and Gaussian processes, we showed that AABBA outperforms the baseline including only atom-atom autocorrelations. Dimensionality reduction studies also showed that the bond-bond and bond-atom autocorrelations yield many of the most relevant features. We believe that the AABBA graph kernel can accelerate the exploration of large chemical spaces and inspire novel molecular representations in which both atomic and bond properties play an important role.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8756–8769 8756–8769"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01583","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphs are one of the most natural and powerful representations available for molecules; natural because they have an intuitive correspondence to skeletal formulas, the language used by chemists worldwide, and powerful, because they are highly expressive both globally (molecular topology) and locally (atom and bond properties). Graph kernels are used to transform molecular graphs into fixed-length vectors, which, based on their capacity of measuring similarity, can be used as fingerprints for machine learning (ML). To date, graph kernels have mostly focused on the atomic nodes of the graph. In this work, we developed a graph kernel based on atom-atom, bond-bond, and bond-atom (AABBA) autocorrelations. The resulting vector representations were tested on regression ML tasks on a data set of transition metal complexes; a benchmark motivated by the higher complexity of these compounds relative to organic molecules. In particular, we tested different flavors of the AABBA kernel in the prediction of the energy barriers and bond distances of the Vaska’s complex data set (Friederich et al., Chem. Sci., 2020, 11, 4584). For a variety of ML models, including neural networks, gradient boosting machines, and Gaussian processes, we showed that AABBA outperforms the baseline including only atom-atom autocorrelations. Dimensionality reduction studies also showed that the bond-bond and bond-atom autocorrelations yield many of the most relevant features. We believe that the AABBA graph kernel can accelerate the exploration of large chemical spaces and inspire novel molecular representations in which both atomic and bond properties play an important role.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support. DiffInt: A Diffusion Model for Structure-Based Drug Design with Explicit Hydrogen Bond Interaction Guidance. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABAA Receptor Negative Allosteric Modulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1