Molecular Design for Cardiac Cell Differentiation Using a Small Data Set and Decorated Shape Features

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-11-25 DOI:10.1021/acs.jcim.4c0135310.1021/acs.jcim.4c01353
Fatemeh Etezadi, Shunichi Ito, Kosuke Yasui, Rodi Kado Abdalkader, Itsunari Minami, Motonari Uesugi, Namasivayam Ganesh Pandian, Haruko Nakano, Atsushi Nakano and Daniel M. Packwood*, 
{"title":"Molecular Design for Cardiac Cell Differentiation Using a Small Data Set and Decorated Shape Features","authors":"Fatemeh Etezadi,&nbsp;Shunichi Ito,&nbsp;Kosuke Yasui,&nbsp;Rodi Kado Abdalkader,&nbsp;Itsunari Minami,&nbsp;Motonari Uesugi,&nbsp;Namasivayam Ganesh Pandian,&nbsp;Haruko Nakano,&nbsp;Atsushi Nakano and Daniel M. Packwood*,&nbsp;","doi":"10.1021/acs.jcim.4c0135310.1021/acs.jcim.4c01353","DOIUrl":null,"url":null,"abstract":"<p >The discovery of small organic compounds for inducing stem cell differentiation is a time- and resource-intensive process. While data science could, in principle, streamline the discovery of these compounds, novel approaches are required due to the difficulty of acquiring training data from large numbers of example compounds. In this paper, we present the design of a new compound for inducing cardiomyocyte differentiation using simple regression models trained with a data set containing only 80 examples. We introduce decorated shape descriptors, an information-rich molecular feature representation that integrates both molecular shape and hydrophilicity information. These models demonstrate improved performance compared to ones using standard molecular descriptors based on shape alone. Model overtraining is diagnosed using a new type of sensitivity analysis. Our new compound is designed using a conservative molecular design strategy, and its effectiveness is confirmed through expression profiles of cardiomyocyte-related marker genes using real-time polymerase chain reaction experiments on human iPS cell lines. This work demonstrates a viable data-driven strategy for designing new compounds for stem cell differentiation protocols and will be useful in situations where training data is limited.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 23","pages":"8824–8837 8824–8837"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01353","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of small organic compounds for inducing stem cell differentiation is a time- and resource-intensive process. While data science could, in principle, streamline the discovery of these compounds, novel approaches are required due to the difficulty of acquiring training data from large numbers of example compounds. In this paper, we present the design of a new compound for inducing cardiomyocyte differentiation using simple regression models trained with a data set containing only 80 examples. We introduce decorated shape descriptors, an information-rich molecular feature representation that integrates both molecular shape and hydrophilicity information. These models demonstrate improved performance compared to ones using standard molecular descriptors based on shape alone. Model overtraining is diagnosed using a new type of sensitivity analysis. Our new compound is designed using a conservative molecular design strategy, and its effectiveness is confirmed through expression profiles of cardiomyocyte-related marker genes using real-time polymerase chain reaction experiments on human iPS cell lines. This work demonstrates a viable data-driven strategy for designing new compounds for stem cell differentiation protocols and will be useful in situations where training data is limited.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. Fatty Alcohol Membrane Model for Quantifying and Predicting Amphiphilicity. Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1