CCT39 Transcription Factor Promotes Chlorophyll Biosynthesis and Photosynthesis in Poplar.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-12-19 DOI:10.1111/pce.15329
Hao Chen, Wenqi Wu, Kang Du, Jun Yang, Xiangyang Kang
{"title":"CCT39 Transcription Factor Promotes Chlorophyll Biosynthesis and Photosynthesis in Poplar.","authors":"Hao Chen, Wenqi Wu, Kang Du, Jun Yang, Xiangyang Kang","doi":"10.1111/pce.15329","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorophyll serves as a crucial pigment in plants, essential for photosynthesis, growth, and development. Our previous study has shown that PpnCCT39 can increase leaf chlorophyll content and photosynthesis rate in poplar. However, the underlying molecular mechanisms remain unknown. In this study, we observed that overexpression of PpnCCT39 not only elevates chlorophyll content and photosynthesis, but also induces alterations in leaf morphology, basal diameter, and chloroplast structure. By performing RNA-seq on terminal buds and leaves at leaf positions 1, 3, 5, and 10, we determined that PpnCCT39 predominantly exerts its effects in young leaves. Chromatin Immunoprecipitation Sequencing (ChIP-seq) performed on PpnCCT39-overexpressing poplars identified 17 194 potential regulatory target genes. By integrating RNA-seq and ChIP-seq datasets along with validation assays for protein-DNA interactions, we determined that PpnCCT39 directly stimulated the transcription of three key genes involved in the chlorophyll biosynthesis and photosynthesis pathways: PagHO1, PagLIL3, and PagPYG7. Furthermore, protein interaction assays revealed that PpnCCT39 interacts with PagRD19 and PagATP2, localized in vesicles and mitochondria respectively, with these interactions occurring within chloroplasts. This study elucidates the molecular mechanism by which the PpnCCT39 transcription factor in poplar promotes chlorophyll biosynthesis and photosynthesis. It also highlights the critical role of PpnCCT39 in nucleocytoplasmic interactions. These findings underscore the significance of PpnCCT39 in regulating chlorophyll biosynthesis and enhancing photosynthesis through molecular design.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15329","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorophyll serves as a crucial pigment in plants, essential for photosynthesis, growth, and development. Our previous study has shown that PpnCCT39 can increase leaf chlorophyll content and photosynthesis rate in poplar. However, the underlying molecular mechanisms remain unknown. In this study, we observed that overexpression of PpnCCT39 not only elevates chlorophyll content and photosynthesis, but also induces alterations in leaf morphology, basal diameter, and chloroplast structure. By performing RNA-seq on terminal buds and leaves at leaf positions 1, 3, 5, and 10, we determined that PpnCCT39 predominantly exerts its effects in young leaves. Chromatin Immunoprecipitation Sequencing (ChIP-seq) performed on PpnCCT39-overexpressing poplars identified 17 194 potential regulatory target genes. By integrating RNA-seq and ChIP-seq datasets along with validation assays for protein-DNA interactions, we determined that PpnCCT39 directly stimulated the transcription of three key genes involved in the chlorophyll biosynthesis and photosynthesis pathways: PagHO1, PagLIL3, and PagPYG7. Furthermore, protein interaction assays revealed that PpnCCT39 interacts with PagRD19 and PagATP2, localized in vesicles and mitochondria respectively, with these interactions occurring within chloroplasts. This study elucidates the molecular mechanism by which the PpnCCT39 transcription factor in poplar promotes chlorophyll biosynthesis and photosynthesis. It also highlights the critical role of PpnCCT39 in nucleocytoplasmic interactions. These findings underscore the significance of PpnCCT39 in regulating chlorophyll biosynthesis and enhancing photosynthesis through molecular design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Importance of Timing of Dark Acclimation for Estimating Light Inhibition of Leaf Respiratory CO2 Efflux. Transcriptional Reprogramming and Allelic Variation in Pleiotropic QTL Regulates Days to Flowering and Growth Habit in Pigeonpea. CCT39 Transcription Factor Promotes Chlorophyll Biosynthesis and Photosynthesis in Poplar. Altering Carotene Hydroxylase Activity of DcCYP97C1 Affects Carotenoid Flux and Changes Taproot Colour in Carrot. Knockdown of OsPHP1 Leads to Improved Yield Under Salinity and Drought in Rice via Regulating the Complex Set of TCS Members and Cytokinin Signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1