{"title":"Biosynthesis of elemicin and isoelemicin in Daucus carota leaves.","authors":"Xing-Qi Huang, Mosaab Yahyaa, Prasada Rao Kongala, Itay Maoz, Natalia Dudareva, Mwafaq Ibdah","doi":"10.1111/tpj.17201","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile phenylpropenes comprise one of the largest groups of plant phenylalanine-derived volatiles that not only possess ecological roles but also exhibit numerous pharmacological activities. Despite their wide distribution in the plant kingdom, biosynthesis of only a small subset of these compounds has been discovered. Here, we elucidated yet unknown steps in the biosynthesis of isoelemicin and elemicin using carrot (Daucus carota subsp. sativus), which produces a wide spectrum of volatile phenylpropenes, as a model system. Comparative transcriptomic analysis combined with metabolic profiling of two carrot cultivars producing different spectrums and levels of phenylpropene compounds revealed that biosynthesis of isoelemicin and elemicin could proceed via the (iso)eugenol-independent pathway, which diverges from the lignin biosynthetic pathway after sinapyl alcohol. Moreover, in planta results showed that two different NADPH-dependent reductases, a newly identified 5-methoxy isoeugenol synthase (DcMIS) and previously characterized (iso)eugenol synthase (DcE(I)GS1), both of which use sinapyl acetate as a substrate, are responsible for the biosynthesis of immediate precursors of isoelemicin and elemicin, respectively. In contrast to penultimate reactions, the final steps in the formation of these phenylpropenes are catalyzed by the same newly characterized methyltransferase, S-adenosyl-l-methionine:5-methoxy(iso)eugenol O-methyltransferase, that methylates the para-hydroxyl group of their respective precursors, thus completing the (iso)eugenol-independent route for the biosynthesis of isoelemicin and elemicin.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17201","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile phenylpropenes comprise one of the largest groups of plant phenylalanine-derived volatiles that not only possess ecological roles but also exhibit numerous pharmacological activities. Despite their wide distribution in the plant kingdom, biosynthesis of only a small subset of these compounds has been discovered. Here, we elucidated yet unknown steps in the biosynthesis of isoelemicin and elemicin using carrot (Daucus carota subsp. sativus), which produces a wide spectrum of volatile phenylpropenes, as a model system. Comparative transcriptomic analysis combined with metabolic profiling of two carrot cultivars producing different spectrums and levels of phenylpropene compounds revealed that biosynthesis of isoelemicin and elemicin could proceed via the (iso)eugenol-independent pathway, which diverges from the lignin biosynthetic pathway after sinapyl alcohol. Moreover, in planta results showed that two different NADPH-dependent reductases, a newly identified 5-methoxy isoeugenol synthase (DcMIS) and previously characterized (iso)eugenol synthase (DcE(I)GS1), both of which use sinapyl acetate as a substrate, are responsible for the biosynthesis of immediate precursors of isoelemicin and elemicin, respectively. In contrast to penultimate reactions, the final steps in the formation of these phenylpropenes are catalyzed by the same newly characterized methyltransferase, S-adenosyl-l-methionine:5-methoxy(iso)eugenol O-methyltransferase, that methylates the para-hydroxyl group of their respective precursors, thus completing the (iso)eugenol-independent route for the biosynthesis of isoelemicin and elemicin.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.