Ning Xia, Yaliang Huang, Cancan He, Yadi Li, Suling Yang, Lin Liu
{"title":"Multifunctional porphyrin-substituted phenylalanine-phenylalanine nanoparticles for diagnostic and therapeutic applications in Alzheimer's disease.","authors":"Ning Xia, Yaliang Huang, Cancan He, Yadi Li, Suling Yang, Lin Liu","doi":"10.1016/j.bioorg.2024.108065","DOIUrl":null,"url":null,"abstract":"<p><p>β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu<sup>2+</sup>-induced generation of ROS. Meanwhile, the TPP-FF NPs could be used as the nanocarriers and quenchers of fluorescently-labeled probes for the detection of Aβ oligomer (AβO). Inhibition of Aβ assembly and dissolution of Aβ aggregates were monitored by Thioflavin T (ThT)-based fluorescent assay and characterized by atomic force microscopy. The Aβ/Cu<sup>2+</sup>-induced generation of ROS was limited by TPP-FF NPs. The fluorescein-labeled probe aptamers attached on the surface of TPP-FF NPs emitted low fluorescence. The interaction between AβO and aptamers induced the release of the probes from the surface of TPP-FF NPs, driving the fluorophore far away from the quenchers and turning on the fluorescence. The signal-on strategy can be used for the detection of AβO with a low detection limit. This work should be evaluable for the development of multifunctional candidates for the diagnosis and treatment of AD.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108065"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
β-Amyloid (Aβ) peptides are believed as the diagnostic biomarkers and therapeutic targets of Alzheimer's disease (AD). Their complexes with copper ions can catalyze the generation of reactive oxygen species (ROS) to further promote neuronal death. Herein, we suggested that porphyrin-substituted phenylalanine-phenylalanine nanoparticles (TPP-FF NPs) could inhibit the aggregation of Aβ monomers, disassemble the fibrillar Aβ aggregates under light illumination, and depressing the Cu2+-induced generation of ROS. Meanwhile, the TPP-FF NPs could be used as the nanocarriers and quenchers of fluorescently-labeled probes for the detection of Aβ oligomer (AβO). Inhibition of Aβ assembly and dissolution of Aβ aggregates were monitored by Thioflavin T (ThT)-based fluorescent assay and characterized by atomic force microscopy. The Aβ/Cu2+-induced generation of ROS was limited by TPP-FF NPs. The fluorescein-labeled probe aptamers attached on the surface of TPP-FF NPs emitted low fluorescence. The interaction between AβO and aptamers induced the release of the probes from the surface of TPP-FF NPs, driving the fluorophore far away from the quenchers and turning on the fluorescence. The signal-on strategy can be used for the detection of AβO with a low detection limit. This work should be evaluable for the development of multifunctional candidates for the diagnosis and treatment of AD.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.