Yi Chen, Shasha Song, Yongfang Wang, Lili Wu, Jianbing Wu, Zhengmeng Jiang, Xinyu Li
{"title":"Topical application of magnolol ameliorates psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.","authors":"Yi Chen, Shasha Song, Yongfang Wang, Lili Wu, Jianbing Wu, Zhengmeng Jiang, Xinyu Li","doi":"10.1016/j.bioorg.2024.108059","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO<sub>4</sub>-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108059"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO4-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.