Ultrasound-assisted modification of oat protein isolates: Structural and functional enhancements.

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-12-16 DOI:10.1016/j.ultsonch.2024.107204
Hamad Rafique, Pai Peng, Xinzhong Hu, Kanza Saeed, Muhammad Zubair Khalid, Waseem Khalid, Sonia Morya, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik
{"title":"Ultrasound-assisted modification of oat protein isolates: Structural and functional enhancements.","authors":"Hamad Rafique, Pai Peng, Xinzhong Hu, Kanza Saeed, Muhammad Zubair Khalid, Waseem Khalid, Sonia Morya, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik","doi":"10.1016/j.ultsonch.2024.107204","DOIUrl":null,"url":null,"abstract":"<p><p>Escalating global protein demand necessitates the commercialization of protein rich products. Oat is a promising high-quality protein source but it requires structural and functional modifications to diversify its application. The current investigation was focused on the impact of different powers of ultrasonic waves (200, 400, and 600 W) on structural and functional characteristics of oat protein isolates to improve its techno-functional properties. Higher strength ultrasound waves generated flat sheet structures which were observed while analyzing microstructure of oat protein isolate (OPI). However, non-significant variation in molecular weight distribution were observed in different treatments. At 600 W power of ultrasonic waves the protein fragments show local accumulation, increased α-helix content. Due to uncoiling of protein structure decrease in β-sheets and β-turns was also observed at 600 W. Protein turbidity decreased significantly under low power ultrasonic treatment (200 W) which significantly increased at higher power. Moderate ultrasonic treatment (400 W) promoted protein dissolution, and maintained a good balance between β-sheets (71.04 ± 0.08), α-helix (16.27 ± 0.02) and β-turns (12.68 ± 0.03), exhibiting optimized flexibility and structural integrity. Whereas, higher strength (600 W) significantly destroyed protein structure. The amino acid content decreased significantly with increasing ultrasonic power. The thermal characteristics of OPI remained unaffected after ultrasound treatment. In conclusion, modifications of secondary and tertiary structure induced by moderate ultrasonic treatment (400 W) improved functional properties of OPI. The 400 W treatment resulted in highest essential amino acid content (EAA) i.e., 22.75 ± 0.82 mg/100 mg and total amino acid content (TAA) i.e., 64.94 ± 2.7 mg/100 mg, which are significantly higher than WHO and FAO standards, suggesting best total and essential amino acid production in comparison to other treatments.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107204"},"PeriodicalIF":8.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Escalating global protein demand necessitates the commercialization of protein rich products. Oat is a promising high-quality protein source but it requires structural and functional modifications to diversify its application. The current investigation was focused on the impact of different powers of ultrasonic waves (200, 400, and 600 W) on structural and functional characteristics of oat protein isolates to improve its techno-functional properties. Higher strength ultrasound waves generated flat sheet structures which were observed while analyzing microstructure of oat protein isolate (OPI). However, non-significant variation in molecular weight distribution were observed in different treatments. At 600 W power of ultrasonic waves the protein fragments show local accumulation, increased α-helix content. Due to uncoiling of protein structure decrease in β-sheets and β-turns was also observed at 600 W. Protein turbidity decreased significantly under low power ultrasonic treatment (200 W) which significantly increased at higher power. Moderate ultrasonic treatment (400 W) promoted protein dissolution, and maintained a good balance between β-sheets (71.04 ± 0.08), α-helix (16.27 ± 0.02) and β-turns (12.68 ± 0.03), exhibiting optimized flexibility and structural integrity. Whereas, higher strength (600 W) significantly destroyed protein structure. The amino acid content decreased significantly with increasing ultrasonic power. The thermal characteristics of OPI remained unaffected after ultrasound treatment. In conclusion, modifications of secondary and tertiary structure induced by moderate ultrasonic treatment (400 W) improved functional properties of OPI. The 400 W treatment resulted in highest essential amino acid content (EAA) i.e., 22.75 ± 0.82 mg/100 mg and total amino acid content (TAA) i.e., 64.94 ± 2.7 mg/100 mg, which are significantly higher than WHO and FAO standards, suggesting best total and essential amino acid production in comparison to other treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasound-assisted modification of oat protein isolates: Structural and functional enhancements. Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing. An experimental class to illustrate the physical and chemical effects of ultrasound as an introduction to practical advanced oxidation processes. An ultrasonic degraded polysaccharide extracted from Pueraria lobata ameliorate ischemic brain injury in mice by regulating the gut microbiota and LPS-TLR4 pathway. Effects of ultrasound-assisted plasma-activated water pretreatment combined with electrohydrodynamics on drying characteristics, active ingredients and volatile components of yam (Dioscorea opposita).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1