Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-12-17 DOI:10.2174/0113816128343081241030054303
Nishi Agrawal, Ganesh Kumar, Sree Prakash Pandey, Shweta Yadav, Manoj Kumar, M S Sudheesh, Ravi Shankar Pandey
{"title":"Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems.","authors":"Nishi Agrawal, Ganesh Kumar, Sree Prakash Pandey, Shweta Yadav, Manoj Kumar, M S Sudheesh, Ravi Shankar Pandey","doi":"10.2174/0113816128343081241030054303","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128343081241030054303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1型糖尿病的免疫治疗:输送系统的机制见解和影响。
1型糖尿病是一种自身免疫性疾病,其特征是产生胰岛素的胰腺β细胞被破坏,导致高血糖和各种并发症。尽管有胰岛素替代疗法,但仍需要针对潜在自身免疫反应的疗法。本文旨在探讨T1D的发病机制及其对免疫治疗的影响。遗传易感性和环境因素有助于T1D的发展,引发免疫介导的β细胞攻击。T细胞,特别是CD4+和CD8+ T细胞,在β细胞破坏中起核心作用。抗原特异性免疫疗法是一种通过靶向特异性抗原(触发免疫系统的物质)进行免疫治疗来修饰免疫系统的独特方法。它旨在通过靶向与T1D相关的自身抗原来恢复免疫耐受。基于纳米颗粒的递送系统提供精确的抗原递送,促进免疫耐受诱导。各种研究已经在临床前模型中证明了纳米颗粒介导的自身抗原和免疫调节剂递送的有效性,并且已经在T1D中获得了多项专利。结合抗原特异性免疫治疗与β细胞再生策略是治疗T1D的一种很有前途的方法。然而,在确保安全性和有效性的同时,优化靶向免疫调节的递送系统仍然存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Fabrication of Mastic Gum Resin Tethered Phospholipid Nanocarriers for the Evaluation and Enhancement of Anti-inflammatory and Anti-bacterial Effects. Advancements in Managing Schizophrenia through Classical Approaches, Mechanisms, and Deep Brain Stimulation. Mesenchymal Stem Cell-conditioned Medium Attenuated CoCl2-induced Injury of Renal Tubular Epithelial Cells by Inhibiting NCOA1, HIF-1α, and Sox9. 3',4'-Dihydroxy Flavonol (DiOHF) Exerting a Positive Effect on Neurogenesis and Retinal Damage in Experimental Brain Ischemia-Reperfusion of Rats. Crosstalk: Biochemical Signatures and Clinical Implications in Rare Hereditary Hemolytic Anemias (Hereditary Spherocytosis).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1