Quest for discovering novel CDK12 inhibitor.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Receptors and Signal Transduction Pub Date : 2025-02-01 Epub Date: 2024-12-19 DOI:10.1080/10799893.2024.2441185
Abhijit Debnath, Rajesh Kumar Singh, Rupa Mazumder, Avijit Mazumder, Shikha Srivastava, Hema Chaudhary, Saloni Mangal, Jahanvi Sanchitra, Pankaj Kumar Tyagi, Sachin Kumar Singh, Anil Kumar Singh
{"title":"Quest for discovering novel CDK12 inhibitor.","authors":"Abhijit Debnath, Rajesh Kumar Singh, Rupa Mazumder, Avijit Mazumder, Shikha Srivastava, Hema Chaudhary, Saloni Mangal, Jahanvi Sanchitra, Pankaj Kumar Tyagi, Sachin Kumar Singh, Anil Kumar Singh","doi":"10.1080/10799893.2024.2441185","DOIUrl":null,"url":null,"abstract":"<p><p>CDK12 is essential for cellular processes like RNA processing, transcription, and cell cycle regulation, inhibiting cancer cell growth and facilitating macrophage invasion. CDK12 is a significant oncogenic factor in various cancers, including HER2-positive breast cancer, Anaplastic thyroid carcinoma, Hepatocellular carcinoma, prostate cancer, and Ewing sarcoma. It is also regarded as a potential biomarker, emphasizing its broader significance in oncology. Targeting CDK12 offers a promising strategy to develop therapy. Various monoclonal antibodies have drawn wide attention, but they are expensive compared to small-molecule inhibitors, limiting their accessibility and affordability for patients. Consequently, this research aims to identify effective CDK12 inhibitors using comprehensive high-throughput virtual screening. RASPD protocol has been employed to screen three different databases against the target followed by drug-likeness, molecular docking, ADME, toxicity, Consensus molecular docking, MD Simulation, and <i>in-vitro</i> studies MTT assay. The research conducted yielded one compound ZINC11784547 has demonstrated robust binding affinity, favorable ADME features, less toxicity, remarkable stability, and cytotoxic effect. The identified compound holds promise for promoting cancer cell death through CDK12 inhibition.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"1-21"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2024.2441185","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CDK12 is essential for cellular processes like RNA processing, transcription, and cell cycle regulation, inhibiting cancer cell growth and facilitating macrophage invasion. CDK12 is a significant oncogenic factor in various cancers, including HER2-positive breast cancer, Anaplastic thyroid carcinoma, Hepatocellular carcinoma, prostate cancer, and Ewing sarcoma. It is also regarded as a potential biomarker, emphasizing its broader significance in oncology. Targeting CDK12 offers a promising strategy to develop therapy. Various monoclonal antibodies have drawn wide attention, but they are expensive compared to small-molecule inhibitors, limiting their accessibility and affordability for patients. Consequently, this research aims to identify effective CDK12 inhibitors using comprehensive high-throughput virtual screening. RASPD protocol has been employed to screen three different databases against the target followed by drug-likeness, molecular docking, ADME, toxicity, Consensus molecular docking, MD Simulation, and in-vitro studies MTT assay. The research conducted yielded one compound ZINC11784547 has demonstrated robust binding affinity, favorable ADME features, less toxicity, remarkable stability, and cytotoxic effect. The identified compound holds promise for promoting cancer cell death through CDK12 inhibition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索新的CDK12抑制剂。
CDK12在RNA加工、转录、细胞周期调控、抑制癌细胞生长、促进巨噬细胞侵袭等细胞过程中发挥重要作用。CDK12是多种癌症的重要致癌因子,包括her2阳性乳腺癌、间变性甲状腺癌、肝细胞癌、前列腺癌和尤文氏肉瘤。它也被认为是一种潜在的生物标志物,强调其在肿瘤学中的广泛意义。靶向CDK12提供了一种很有前景的治疗策略。各种单克隆抗体引起了广泛的关注,但与小分子抑制剂相比,它们的价格昂贵,限制了患者的可及性和可负担性。因此,本研究旨在通过全面的高通量虚拟筛选来鉴定有效的CDK12抑制剂。采用RASPD协议筛选3种不同的数据库,然后进行药物相似性、分子对接、ADME、毒性、共识分子对接、MD模拟和体外研究MTT测定。研究发现,化合物ZINC11784547具有较强的结合亲和力、良好的ADME特性、较低的毒性、显著的稳定性和细胞毒作用。所鉴定的化合物有望通过抑制CDK12促进癌细胞死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
期刊最新文献
Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study. Focusing on Keap1, IKKβ, and Bcl2 proteins: predicted targets of stigmasterol in neurodegeneration. Quest for discovering novel CDK12 inhibitor. Computational insights into potent USP5 inhibitors based on multistep virtual screening and molecular dynamics simulation. Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated in silico and in vitro exploration using isolated pancreatic islets of C57BL/6J mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1