{"title":"A data-integrative modeling approach accurately characterizes the effects of mutations on Arabidopsis lipid metabolism.","authors":"Sandra Correa Córdoba, Asdrúbal Burgos, Álvaro Cuadros-Inostroza, Ke Xu, Yariv Brotman, Zoran Nikoloski","doi":"10.1093/plphys/kiae615","DOIUrl":null,"url":null,"abstract":"<p><p>Collections of insertional mutants have been instrumental for characterizing the functional relevance of genes in different model organisms, including Arabidopsis (Arabidopsis thaliana). However, mutations may often result in subtle phenotypes, rendering it difficult to pinpoint the function of a knocked-out gene. Here, we present a data-integrative modeling approach that enables predicting the effects of mutations on metabolic traits and plant growth. To test the approach, we gathered lipidomics data and physiological read-outs for a set of 64 Arabidopsis lines with mutations in lipid metabolism. Use of flux sums as a proxy for metabolite concentrations allowed us to integrate the relative abundance of lipids and facilitated accurate predictions of growth and biochemical phenotype in approximately 73% and 76% of the mutants, respectively, for which phenotypic data were available. Likewise, we showed that this approach can pinpoint alterations in metabolic pathways related to silent mutations. Therefore, our study paves the way for coupling model-driven characterization of mutant lines from different mutagenesis approaches with metabolomic technologies, as well as for validating knowledge structured in large-scale metabolic networks of plants and other species.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae615","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Collections of insertional mutants have been instrumental for characterizing the functional relevance of genes in different model organisms, including Arabidopsis (Arabidopsis thaliana). However, mutations may often result in subtle phenotypes, rendering it difficult to pinpoint the function of a knocked-out gene. Here, we present a data-integrative modeling approach that enables predicting the effects of mutations on metabolic traits and plant growth. To test the approach, we gathered lipidomics data and physiological read-outs for a set of 64 Arabidopsis lines with mutations in lipid metabolism. Use of flux sums as a proxy for metabolite concentrations allowed us to integrate the relative abundance of lipids and facilitated accurate predictions of growth and biochemical phenotype in approximately 73% and 76% of the mutants, respectively, for which phenotypic data were available. Likewise, we showed that this approach can pinpoint alterations in metabolic pathways related to silent mutations. Therefore, our study paves the way for coupling model-driven characterization of mutant lines from different mutagenesis approaches with metabolomic technologies, as well as for validating knowledge structured in large-scale metabolic networks of plants and other species.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.