Phosphorylation-dependent VaMYB4a regulates cold stress in grapevine by inhibiting VaPIF3 and activating VaCBF4

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2025-01-24 DOI:10.1093/plphys/kiaf035
Qinhan Yu, Qiaoling Zheng, Chang Liu, Junxia Zhang, Yaping Xie, Wenkong Yao, Jiaxin Li, Ningbo Zhang, Xinyi Hao, Weirong Xu
{"title":"Phosphorylation-dependent VaMYB4a regulates cold stress in grapevine by inhibiting VaPIF3 and activating VaCBF4","authors":"Qinhan Yu, Qiaoling Zheng, Chang Liu, Junxia Zhang, Yaping Xie, Wenkong Yao, Jiaxin Li, Ningbo Zhang, Xinyi Hao, Weirong Xu","doi":"10.1093/plphys/kiaf035","DOIUrl":null,"url":null,"abstract":"Cold stress severely impacts the quality and yield of grapevine (Vitis L.). In this study, we extend our previous work to elucidate the role and regulatory mechanisms of Vitis amurensis MYB transcription factor 4a (VaMYB4a) in grapevine's response to cold stress. Our results identified VaMYB4a as a key positive regulator of cold stress. We demonstrated that VaMYB4a undergoes phosphorylation by V. amurensis CBL-interacting protein kinase 18 (VaCIPK18) under cold stress, a process that activates VaMYB4a transcriptional activity. Using ChIP-seq, we performed a comprehensive genomic search to identify downstream components that interact with VaMYB4a, leading to the discovery of a basic helix-loop-helix (bHLH) transcription factor, V. amurensis phytochrome-interacting factor 3 (VaPIF3). VaMYB4a attenuated the transcriptional activity of VaPIF3 through a phosphorylation-dependent interaction under cold conditions. Furthermore, VaPIF3, which interacts with and inhibits V. amurensis C-repeat binding factor 4 (VaCBF4, a known positive regulator of cold stress), has its activity attenuated by VaMYB4a, which mediates the modulation of this pathway. Notably, VaMYB4a also interacted with and promoted the expression of VaCBF4 in a phosphorylation-dependent manner. Our study shows that VaMYB4a positively modulates cold tolerance in plants by simultaneously downregulating VaPIF3 and upregulating VaCBF4. These findings provide a nuanced understanding of the transcriptional response in grapevine under cold stress and contribute to the broader field of plant stress physiology.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"34 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cold stress severely impacts the quality and yield of grapevine (Vitis L.). In this study, we extend our previous work to elucidate the role and regulatory mechanisms of Vitis amurensis MYB transcription factor 4a (VaMYB4a) in grapevine's response to cold stress. Our results identified VaMYB4a as a key positive regulator of cold stress. We demonstrated that VaMYB4a undergoes phosphorylation by V. amurensis CBL-interacting protein kinase 18 (VaCIPK18) under cold stress, a process that activates VaMYB4a transcriptional activity. Using ChIP-seq, we performed a comprehensive genomic search to identify downstream components that interact with VaMYB4a, leading to the discovery of a basic helix-loop-helix (bHLH) transcription factor, V. amurensis phytochrome-interacting factor 3 (VaPIF3). VaMYB4a attenuated the transcriptional activity of VaPIF3 through a phosphorylation-dependent interaction under cold conditions. Furthermore, VaPIF3, which interacts with and inhibits V. amurensis C-repeat binding factor 4 (VaCBF4, a known positive regulator of cold stress), has its activity attenuated by VaMYB4a, which mediates the modulation of this pathway. Notably, VaMYB4a also interacted with and promoted the expression of VaCBF4 in a phosphorylation-dependent manner. Our study shows that VaMYB4a positively modulates cold tolerance in plants by simultaneously downregulating VaPIF3 and upregulating VaCBF4. These findings provide a nuanced understanding of the transcriptional response in grapevine under cold stress and contribute to the broader field of plant stress physiology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit Phosphorylation-dependent VaMYB4a regulates cold stress in grapevine by inhibiting VaPIF3 and activating VaCBF4 The translation initiation factor eIF3M2 upregulates HEAT SHOCK PROTEIN 70 to maintain pollen tube membrane integrity during heat shock A C4 plant K+ channel accelerates stomata to enhance C3 photosynthesis and water use efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1