Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli.

IF 1.1 4区 医学 Q4 NEUROSCIENCES Visual Neuroscience Pub Date : 2024-12-19 DOI:10.1017/S095252382400004X
Martin Timothy Wilkinson Scott, Alexandra Yakovleva, Anthony Matthew Norcia
{"title":"Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli.","authors":"Martin Timothy Wilkinson Scott, Alexandra Yakovleva, Anthony Matthew Norcia","doi":"10.1017/S095252382400004X","DOIUrl":null,"url":null,"abstract":"<p><p>Recent reports suggest the ON and OFF pathways are differentially susceptible to selective vision loss in glaucoma. Thus, perimetric assessment of ON- and OFF-pathway function may serve as a useful diagnostic. However, this necessitates a developed understanding of normal ON/OFF pathway function around the visual field and as a function of input intensity. Here, using electroencephalography, we measured ON- and OFF-pathway biased contrast response functions in the upper and lower visual fields. Using the steady-state visually evoked potential paradigm, we flickered achromatic luminance probes according to a saw-tooth waveform, the fast phase of which biased responses towards the ON or OFF pathways. Neural responses from the upper and lower visual fields were simultaneously measured using frequency tagging - probes in the upper visual field modulated at 3.75 Hz, while those in the lower visual field modulated at 3 Hz. We find that responses to OFF/decrements are larger than ON/increments, especially in the lower visual field. In the lower visual field, both ON and OFF responses were well described by a sigmoidal non-linearity. In the upper visual field, the ON pathway function was very similar to that of the lower, but the OFF pathway function showed reduced saturation and more cross-subject variability. Overall, this demonstrates that the relationship between the ON and OFF pathways depends on the visual field location and contrast level, potentially reflective of natural scene statistics.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"41 ","pages":"E007"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S095252382400004X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent reports suggest the ON and OFF pathways are differentially susceptible to selective vision loss in glaucoma. Thus, perimetric assessment of ON- and OFF-pathway function may serve as a useful diagnostic. However, this necessitates a developed understanding of normal ON/OFF pathway function around the visual field and as a function of input intensity. Here, using electroencephalography, we measured ON- and OFF-pathway biased contrast response functions in the upper and lower visual fields. Using the steady-state visually evoked potential paradigm, we flickered achromatic luminance probes according to a saw-tooth waveform, the fast phase of which biased responses towards the ON or OFF pathways. Neural responses from the upper and lower visual fields were simultaneously measured using frequency tagging - probes in the upper visual field modulated at 3.75 Hz, while those in the lower visual field modulated at 3 Hz. We find that responses to OFF/decrements are larger than ON/increments, especially in the lower visual field. In the lower visual field, both ON and OFF responses were well described by a sigmoidal non-linearity. In the upper visual field, the ON pathway function was very similar to that of the lower, but the OFF pathway function showed reduced saturation and more cross-subject variability. Overall, this demonstrates that the relationship between the ON and OFF pathways depends on the visual field location and contrast level, potentially reflective of natural scene statistics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视野不对称性对ON和OFF通路偏置刺激的反应。
最近的报道表明,在青光眼中,ON和OFF通路对选择性视力丧失的易感性是不同的。因此,对ON-和off通路功能的周界评估可能是一种有用的诊断方法。然而,这需要对视野周围正常的ON/OFF通路功能和输入强度的函数有深入的了解。在这里,我们使用脑电图测量了上下视野的ON和off通路偏置对比反应函数。使用稳态视觉诱发电位范式,我们根据锯齿形波形闪烁消色差亮度探头,其快速相位偏向于ON或OFF通路。使用频率标记同时测量上下视野的神经反应-上视野的探针以3.75 Hz调制,而下视野的探针以3 Hz调制。我们发现对关闭/减少的响应大于打开/增加,特别是在较低的视野中。在较低的视野,开和关的反应都很好地描述了一个s型非线性。在上视野中,ON通路功能与下视野非常相似,但OFF通路功能表现出饱和度降低和更大的跨主体变异性。总的来说,这表明打开和关闭通路之间的关系取决于视野位置和对比度水平,这可能反映了自然场景统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
期刊最新文献
Support for the efficient coding account of visual discomfort. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Pattern reversal chromatic VEPs like onsets, are unaffected by attentional demand. The interaction between luminance polarity grouping and symmetry axes on the ERP responses to symmetry. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1