Electrode-Assisted Pressurized CO2 Fermentation for Acetic Acid and Ethanol Production: Enhanced Carbon Fixation, Metabolic Efficiency, and Sustainability in Carbon-Negative Bioprocesses

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-12-20 DOI:10.1021/acssuschemeng.4c07537
Athmakuri Tharak, S. Venkata Mohan
{"title":"Electrode-Assisted Pressurized CO2 Fermentation for Acetic Acid and Ethanol Production: Enhanced Carbon Fixation, Metabolic Efficiency, and Sustainability in Carbon-Negative Bioprocesses","authors":"Athmakuri Tharak, S. Venkata Mohan","doi":"10.1021/acssuschemeng.4c07537","DOIUrl":null,"url":null,"abstract":"Gas fermentation using homoacetogenic consortia to convert CO<sub>2</sub> into sustainable fuels and chemicals has emerged as a promising biotechnological route toward carbon neutrality. However, a significant challenge is the low gas–liquid mass transfer rates due to the limited solubility of C1 gases. This study investigates CO<sub>2</sub> fermentation enhancement using a high-pressure gas fermentation (HPGF) reactor embedded with electrodes, effectively overcoming CO<sub>2</sub> solubility barriers and addressing sustainability through an innovative approach. CO<sub>2</sub> fermentation with H<sub>2</sub> as the electron donor was conducted in pressurized fermenters (PFs) at varying partial pressures (pCO<sub>2</sub>-2, -3, and -5 bar), while pressured electro-fermentation (PEF) used electrodes to replace H<sub>2</sub>. The pCO<sub>2</sub>-PEF-5 condition achieved the highest acetic acid productivity of 2.8 g/L, followed by pCO<sub>2</sub>-PEF-3 at 2.65 g/L, representing 1.2 and 1.18 times higher yields than the best condition of PFs (pCO<sub>2</sub>-PF-3, 2.1 g/L), respectively. Additionally, PEF systems enhanced solventogenic activity, with ethanol production reaching 1.4 g/L in pCO<sub>2</sub>-PEF-5. The substitution of H<sub>2</sub> with electrodes in CO<sub>2</sub> fermentation improved fixation and conversion rates (pCO<sub>2</sub>-PEF-5: 67 mg/L/h, 77%), demonstrating a viable strategy for enhanced CO<sub>2</sub> conversion. The thermodynamic analysis indicated more spontaneous synthesis of acetic acid and ethanol in PEF systems compared with PF systems. Bioelectrochemical assessments revealed higher charge transfer rates, with a faradaic efficiency of 48% in pCO<sub>2</sub>-PEF-5, further supporting CO<sub>2</sub> conversion. Especially, key genes in the Wood–Ljungdahl pathway (WLP) were upregulated in PEF systems, confirming that electro-fermentation influences metabolic pathways favoring carbon fixation and solvent production. A life cycle assessment (LCA) highlighted a net emission reduction of −7 kg CO<sub>2</sub> equiv in PEF-5 and lower impact across endpoint categories, highlighting the carbon-negative potential of this approach. From a planetary boundary framework perspective, this process operates within the Holocene state by reducing CO<sub>2</sub> emissions, helps in maintaining biosphere integrity, reduces atmospheric CO<sub>2</sub>, and contributes minimally to nitrogen and phosphorus flows. This study signifies the sustainability of the PEF strategy for scaling CO<sub>2</sub> conversion processes. The integration of electro-fermentation not only addresses mass transfer limitations but also enhances carbon fixation efficiency and metabolic productivity.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"22 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas fermentation using homoacetogenic consortia to convert CO2 into sustainable fuels and chemicals has emerged as a promising biotechnological route toward carbon neutrality. However, a significant challenge is the low gas–liquid mass transfer rates due to the limited solubility of C1 gases. This study investigates CO2 fermentation enhancement using a high-pressure gas fermentation (HPGF) reactor embedded with electrodes, effectively overcoming CO2 solubility barriers and addressing sustainability through an innovative approach. CO2 fermentation with H2 as the electron donor was conducted in pressurized fermenters (PFs) at varying partial pressures (pCO2-2, -3, and -5 bar), while pressured electro-fermentation (PEF) used electrodes to replace H2. The pCO2-PEF-5 condition achieved the highest acetic acid productivity of 2.8 g/L, followed by pCO2-PEF-3 at 2.65 g/L, representing 1.2 and 1.18 times higher yields than the best condition of PFs (pCO2-PF-3, 2.1 g/L), respectively. Additionally, PEF systems enhanced solventogenic activity, with ethanol production reaching 1.4 g/L in pCO2-PEF-5. The substitution of H2 with electrodes in CO2 fermentation improved fixation and conversion rates (pCO2-PEF-5: 67 mg/L/h, 77%), demonstrating a viable strategy for enhanced CO2 conversion. The thermodynamic analysis indicated more spontaneous synthesis of acetic acid and ethanol in PEF systems compared with PF systems. Bioelectrochemical assessments revealed higher charge transfer rates, with a faradaic efficiency of 48% in pCO2-PEF-5, further supporting CO2 conversion. Especially, key genes in the Wood–Ljungdahl pathway (WLP) were upregulated in PEF systems, confirming that electro-fermentation influences metabolic pathways favoring carbon fixation and solvent production. A life cycle assessment (LCA) highlighted a net emission reduction of −7 kg CO2 equiv in PEF-5 and lower impact across endpoint categories, highlighting the carbon-negative potential of this approach. From a planetary boundary framework perspective, this process operates within the Holocene state by reducing CO2 emissions, helps in maintaining biosphere integrity, reduces atmospheric CO2, and contributes minimally to nitrogen and phosphorus flows. This study signifies the sustainability of the PEF strategy for scaling CO2 conversion processes. The integration of electro-fermentation not only addresses mass transfer limitations but also enhances carbon fixation efficiency and metabolic productivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
One-Step Synthesis of PtPb Alloy Nanoparticles Via Wet Chemical Method for the Upgraded Recycling of PLA Plastic Substrate-Binding Cavity Engineering of the Lipoxygenase from Pseudomonas aeruginosa to Produce 8S- and 11S-Hydroxyeicosatetraenoic Acids High-Selective Upgrading of Ethanol to C4–10 Alcohols over Hydroxyapatite Catalyst with Superior Basicity Transparent, Fluorophore-Doped Cellulose Nanocrystal Films Prepared from Crop Residue: Superior Radiative Cooler and Organic Photodetector Electrode-Assisted Pressurized CO2 Fermentation for Acetic Acid and Ethanol Production: Enhanced Carbon Fixation, Metabolic Efficiency, and Sustainability in Carbon-Negative Bioprocesses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1