Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion

IF 4.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemical Communications Pub Date : 2025-01-07 DOI:10.1039/d4cc05900j
Hengjia Shao , Li Zhong , Xingqiao Wu , Yun-Xiao Wang , Sean C. Smith , Xin Tan
{"title":"Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion","authors":"Hengjia Shao ,&nbsp;Li Zhong ,&nbsp;Xingqiao Wu ,&nbsp;Yun-Xiao Wang ,&nbsp;Sean C. Smith ,&nbsp;Xin Tan","doi":"10.1039/d4cc05900j","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO<sub>2</sub> reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal–sulfur batteries (Li–S and Na–S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.</div></div>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"61 11","pages":"Pages 2203-2216"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1359734524028210","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal–sulfur batteries (Li–S and Na–S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳负载单原子储能转化催化剂的密度泛函理论研究进展
单原子催化剂(SACs)继承了均相催化剂和多相催化剂的优点,成为储能与转化研究的前沿和热点。特别是碳负载SACs (CS-SACs),由于其最大的原子效率、独特的电子和配位结构以及活性催化位点和碳底物之间有益的协同效应,是许多能量存储和转换应用的优秀候选者。本文从配位结构控制、非金属元素掺杂、轴向配位设计、多金属活性位点构建等方面综述了优化CS-SACs储能和转化的原子水平调控策略。在此基础上,综述了利用析氢反应、析氧反应、氧还原反应、CO2还原反应、氮还原反应、尿素电合成以及单价金属硫电池(Li-S和Na-S电池)等电催化策略设计cs - sac的密度泛函理论研究进展。最后,强调了这一新兴领域当前面临的挑战和未来的机遇。本文的研究将为cs - sac结构和功能的合理设计提供有益的指导,并有助于在储能和转换应用中优化材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
期刊最新文献
HV-CVD synthesis yielding B-doped SWCNTs with a constrained diameter distribution. Transition metal dichalcogenide catalysts incorporating hollow carbon spheres toward water splitting and supercapacitors. Solvent- and heat-induced polymorphic transformation with single-crystal integrity in Cu(II) paddle wheel metal complexes. Heteroatoms Constructed Covalent Organic Frameworks for Oxygen Electrocatalysis and Rechargeable Zinc-Air Battery Advances in organelle-targeted photosensitizer-mediated pyroptosis for photodynamic tumor therapy: overcoming immunological limitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1