{"title":"Severe Weather Events and Atmospheric Monitoring from Satellite Navigation Systems","authors":"O. G. Khutorova, M. V. Maslova, V. E. Khutorov","doi":"10.1134/S102485602470091X","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric monitoring from global satellite navigation systems is usually used for estimating the atmospheric integral water vapor and measuring zenith tropospheric delay of satellite radio signals and its gradient parameters characterizing atmospheric mesoscale irregularities with a high temporal resolution. Based on a sample of several hundred severe weather events corresponding to available observations at the nearest satellite stations in the Republic of Tatarstan and Moscow region located at latitudes 55°–56° N, the work shows a significant variability of these atmospheric parameters associated with convective severe weather events. The inhomogeneity of the field of the zenith tropospheric delay of satellite signals is shown to strongly increase under the conditions of a severe weather event, which is manifested in the increase in its gradient parameters and their fluctuations, as well as in the growth of the integral water vapor. The intensity of fluctuations of the integral water vapor most strongly changes if a station is located not further than 20 km from a severe event, which is explained by the size of convective cells. However, even if a station is spaced up to 200 km apart from a severe event, an increase in the atmospheric integral water vapor and the amplification of inhomogeneity as compared to long-term average data are observed.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"684 - 688"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S102485602470091X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric monitoring from global satellite navigation systems is usually used for estimating the atmospheric integral water vapor and measuring zenith tropospheric delay of satellite radio signals and its gradient parameters characterizing atmospheric mesoscale irregularities with a high temporal resolution. Based on a sample of several hundred severe weather events corresponding to available observations at the nearest satellite stations in the Republic of Tatarstan and Moscow region located at latitudes 55°–56° N, the work shows a significant variability of these atmospheric parameters associated with convective severe weather events. The inhomogeneity of the field of the zenith tropospheric delay of satellite signals is shown to strongly increase under the conditions of a severe weather event, which is manifested in the increase in its gradient parameters and their fluctuations, as well as in the growth of the integral water vapor. The intensity of fluctuations of the integral water vapor most strongly changes if a station is located not further than 20 km from a severe event, which is explained by the size of convective cells. However, even if a station is spaced up to 200 km apart from a severe event, an increase in the atmospheric integral water vapor and the amplification of inhomogeneity as compared to long-term average data are observed.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.