Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool
{"title":"Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool","authors":"Yunus Ziya Kaya, Fatih Üneş","doi":"10.1111/jfr3.13046","DOIUrl":null,"url":null,"abstract":"<p>Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13046","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.