Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Flood Risk Management Pub Date : 2024-12-05 DOI:10.1111/jfr3.13046
Yunus Ziya Kaya, Fatih Üneş
{"title":"Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool","authors":"Yunus Ziya Kaya,&nbsp;Fatih Üneş","doi":"10.1111/jfr3.13046","DOIUrl":null,"url":null,"abstract":"<p>Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13046","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
期刊最新文献
Application of forecast-informed reservoir operations at US Army Corps of Engineers dams in California Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool Assessment of future risk of agricultural crop production under climate and social changes scenarios: A case of the Solo River basin in Indonesia A GIS-based tool for dynamic assessment of community susceptibility to flash flooding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1