{"title":"How much energy can giant reed and Miscanthus produce in marginal lands across Italy? A modelling solution under current and future scenarios","authors":"Giovanni Alessandro Cappelli, Fabrizio Ginaldi, Davide Fanchini, Enrico Ceotto, Marcello Donatelli","doi":"10.1111/gcbb.13186","DOIUrl":null,"url":null,"abstract":"<p>Practical strategies for bioenergy planning in the face of climate change should rely on ready-to-use yield projections. Perennial grasses grown in marginal lands (MLs) provide abundant feedstocks to be converted into different energy vectors. The aim of this study was to provide a model-based assessment of how much energy, in the form of biomethane and bioethanol, can be achieved by Miscanthus and giant reed across Italy. Marginal lands were here conceived as low profitable non-irrigated areas, without mechanization and/or nature conservation constraints. Marginal lands eligible for simulations were selected crossing environmental factors and ecological requirements of the two crops. The biophysical model Arungro was calibrated considering rainfed/full-irrigated systems using multiple-site and multiple-year datasets. The model was connected to a georeferenced database, with information on (i) current/future climate, (ii) agronomic practices, (iii) soil physics/hydrology, (iv) MLs, and (v) crop suitability to environment and simulations were performed at 500 × 500 m spatial resolution across all Italian regions. Under baseline conditions (i.e., 1981–2010), the total area of MLs available for energy crops (i.e., 49,100 km<sup>2</sup>) allowed to obtain 23,500 (giant reed) and 23,700 (Miscanthus) Giga-m<sup>3</sup> CH4-STP of biomethane and 18,600 (giant reed) and 24,400 (Miscanthus) Giga-liters of bioethanol. While the amount of energy carriers is expected to increase, on average, of +4.6% in 2055 and + 0.4% (mean of +9.2%—South, −2.4%—Center, −5.4%—North Italy) in 2085 for Miscanthus, giant reed-based productions are projected to be more stable across the country and time frames (+6.7% in 2055; +2.8% in 2085). This study contributed to define a modular and detailed procedure aimed at quantifying attainable energy yields from bioenergy grasses in MLs. The consideration of fine-resolution multiple-scale heterogeneity allowed for an in-depth investigation of biomass productivity, attainable energy yields, and related stability under current/climate change scenarios, highlighting critical spots and opportunities within the country.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13186","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13186","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Practical strategies for bioenergy planning in the face of climate change should rely on ready-to-use yield projections. Perennial grasses grown in marginal lands (MLs) provide abundant feedstocks to be converted into different energy vectors. The aim of this study was to provide a model-based assessment of how much energy, in the form of biomethane and bioethanol, can be achieved by Miscanthus and giant reed across Italy. Marginal lands were here conceived as low profitable non-irrigated areas, without mechanization and/or nature conservation constraints. Marginal lands eligible for simulations were selected crossing environmental factors and ecological requirements of the two crops. The biophysical model Arungro was calibrated considering rainfed/full-irrigated systems using multiple-site and multiple-year datasets. The model was connected to a georeferenced database, with information on (i) current/future climate, (ii) agronomic practices, (iii) soil physics/hydrology, (iv) MLs, and (v) crop suitability to environment and simulations were performed at 500 × 500 m spatial resolution across all Italian regions. Under baseline conditions (i.e., 1981–2010), the total area of MLs available for energy crops (i.e., 49,100 km2) allowed to obtain 23,500 (giant reed) and 23,700 (Miscanthus) Giga-m3 CH4-STP of biomethane and 18,600 (giant reed) and 24,400 (Miscanthus) Giga-liters of bioethanol. While the amount of energy carriers is expected to increase, on average, of +4.6% in 2055 and + 0.4% (mean of +9.2%—South, −2.4%—Center, −5.4%—North Italy) in 2085 for Miscanthus, giant reed-based productions are projected to be more stable across the country and time frames (+6.7% in 2055; +2.8% in 2085). This study contributed to define a modular and detailed procedure aimed at quantifying attainable energy yields from bioenergy grasses in MLs. The consideration of fine-resolution multiple-scale heterogeneity allowed for an in-depth investigation of biomass productivity, attainable energy yields, and related stability under current/climate change scenarios, highlighting critical spots and opportunities within the country.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.