Design and Analysis of Microstrip Line Fed Gap Coupled Triple Band Slotted Patch Antenna for WiMAX, WLAN, and Sub-6 GHz 5G Applications

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Numerical Modelling-Electronic Networks Devices and Fields Pub Date : 2024-12-10 DOI:10.1002/jnm.70005
Ramesh Kumar Verma, Vikram Bali, Akhilesh Kumar, Prabina Pattanayak, Ravi Kant Prasad, Maninder Singh
{"title":"Design and Analysis of Microstrip Line Fed Gap Coupled Triple Band Slotted Patch Antenna for WiMAX, WLAN, and Sub-6 GHz 5G Applications","authors":"Ramesh Kumar Verma,&nbsp;Vikram Bali,&nbsp;Akhilesh Kumar,&nbsp;Prabina Pattanayak,&nbsp;Ravi Kant Prasad,&nbsp;Maninder Singh","doi":"10.1002/jnm.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a gap coupled triple band slot loaded microstrip patch antenna with parasitic patches. It consist inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot at center of patch. The inverted U-shape open-ended slot generates a driven patch at bottom side and an inverted U-shape parasitic patch at middle side of patch while inverted T-shape open-ended slot generates two rectangular shape parasitic patches of same dimension at top side of patch. The proposed gap coupled antenna covers 2.29 to 2.77 GHz in first band, 3.25 to 3.65 GHz in second band and 4.67 to 5.72 GHz in third band with return losses of −23.2, −19.90, and −38.06 dB, respectively. The proposed antenna resonates at 2.57, 3.48, and 5.37 GHz with fractional bandwidth of 18.97% (480 MHz), 11.59% (400 MHz), and 20.21% (1050 MHz), respectively. The return loss and bandwidth of presented antenna is increases gradually by loading inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot in antenna patch. The proposed antenna exhibits stable peak gain of 4.45, 4.81, and 5.26 dBi and efficiency of 89.5%, 89%, and 90% in three resonating bands. The antenna resonating bands are applicable for WiMAX: 2.5/3.5/5.5 GHz (2.5–2.69, 3.4–3.69, and 5.25–5.85 GHz), WLAN: 2.4/5.2 GHz (2.4–2.484 and 5.15–5.35 GHz) and sub-6 GHz 5G: 3.5 GHz (3.3–3.8 GHz). The size of antenna is 40 mm × 50 mm (0.34 × <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow>\n <mn>0.43</mn>\n <mi>λ</mi>\n </mrow>\n <mn>0</mn>\n <mn>2</mn>\n </msubsup>\n </mrow>\n <annotation>$$ 0.43{\\lambda}_0^2 $$</annotation>\n </semantics></math> at frequency 2.57 GHz). The gap coupled antenna geometry is fed by microstrip line feed and simulated by IE3D simulation tool.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a gap coupled triple band slot loaded microstrip patch antenna with parasitic patches. It consist inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot at center of patch. The inverted U-shape open-ended slot generates a driven patch at bottom side and an inverted U-shape parasitic patch at middle side of patch while inverted T-shape open-ended slot generates two rectangular shape parasitic patches of same dimension at top side of patch. The proposed gap coupled antenna covers 2.29 to 2.77 GHz in first band, 3.25 to 3.65 GHz in second band and 4.67 to 5.72 GHz in third band with return losses of −23.2, −19.90, and −38.06 dB, respectively. The proposed antenna resonates at 2.57, 3.48, and 5.37 GHz with fractional bandwidth of 18.97% (480 MHz), 11.59% (400 MHz), and 20.21% (1050 MHz), respectively. The return loss and bandwidth of presented antenna is increases gradually by loading inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot in antenna patch. The proposed antenna exhibits stable peak gain of 4.45, 4.81, and 5.26 dBi and efficiency of 89.5%, 89%, and 90% in three resonating bands. The antenna resonating bands are applicable for WiMAX: 2.5/3.5/5.5 GHz (2.5–2.69, 3.4–3.69, and 5.25–5.85 GHz), WLAN: 2.4/5.2 GHz (2.4–2.484 and 5.15–5.35 GHz) and sub-6 GHz 5G: 3.5 GHz (3.3–3.8 GHz). The size of antenna is 40 mm × 50 mm (0.34 ×  0.43 λ 0 2 $$ 0.43{\lambda}_0^2 $$ at frequency 2.57 GHz). The gap coupled antenna geometry is fed by microstrip line feed and simulated by IE3D simulation tool.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于WiMAX、WLAN和Sub-6 GHz 5G应用的微带线馈隙耦合三带开槽贴片天线设计与分析
提出了一种带寄生贴片的间隙耦合三频带缝隙加载微带贴片天线。由倒u型开口槽和倒t型开口槽组成,并在贴片中心开有一个矩形槽。倒u形开口槽在贴片的底部产生一个驱动贴片,在贴片的中部产生一个倒u形寄生贴片,而倒t形开口槽在贴片的顶部产生两个相同尺寸的矩形寄生贴片。该间隙耦合天线覆盖第一频段2.29 ~ 2.77 GHz、第二频段3.25 ~ 3.65 GHz和第三频段4.67 ~ 5.72 GHz,回波损耗分别为- 23.2、- 19.90和- 38.06 dB。该天线谐振频率为2.57、3.48和5.37 GHz,分数带宽为18.97% (480 MHz), 11.59% (400 MHz), and 20.21% (1050 MHz), respectively. The return loss and bandwidth of presented antenna is increases gradually by loading inverted U-shape and inverted T-shape open-ended slots along with a rectangular slot in antenna patch. The proposed antenna exhibits stable peak gain of 4.45, 4.81, and 5.26 dBi and efficiency of 89.5%, 89%, and 90% in three resonating bands. The antenna resonating bands are applicable for WiMAX: 2.5/3.5/5.5 GHz (2.5–2.69, 3.4–3.69, and 5.25–5.85 GHz), WLAN: 2.4/5.2 GHz (2.4–2.484 and 5.15–5.35 GHz) and sub-6 GHz 5G: 3.5 GHz (3.3–3.8 GHz). The size of antenna is 40 mm × 50 mm (0.34 ×  0.43 λ 0 2 $$ 0.43{\lambda}_0^2 $$ at frequency 2.57 GHz). The gap coupled antenna geometry is fed by microstrip line feed and simulated by IE3D simulation tool.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
期刊最新文献
A Novel Forecasting Approach to Schedule Electric Vehicle Charging Using Real-Time Data Linear Electrical Circuits Described by a Novel Constant Proportional Caputo Hybrid Operator Compact Dual Port MIMO Antenna for X, Ku, K, Ka, and V Band Applications Low-Frequency Noise Analysis of GSCG Double-Gate MOSFET in the Subthreshold Region Numerical Simulation and Investigation of Nanoscale Organic Field-Effect Transistor With Varying Channel Thickness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1