System-Wide Greenhouse Gas Emissions From Mountain Reservoirs Draining Permafrost Catchments on the Qinghai-Tibet Plateau

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2024-12-14 DOI:10.1029/2024GB008112
Liwei Zhang, Emily H. Stanley, Gerard Rocher-Ros, Joshua F. Dean, Dongfeng Li, Qingrui Wang, Ling Zhang, Wenqing Shi, Tian Xie, Xinghui Xia
{"title":"System-Wide Greenhouse Gas Emissions From Mountain Reservoirs Draining Permafrost Catchments on the Qinghai-Tibet Plateau","authors":"Liwei Zhang,&nbsp;Emily H. Stanley,&nbsp;Gerard Rocher-Ros,&nbsp;Joshua F. Dean,&nbsp;Dongfeng Li,&nbsp;Qingrui Wang,&nbsp;Ling Zhang,&nbsp;Wenqing Shi,&nbsp;Tian Xie,&nbsp;Xinghui Xia","doi":"10.1029/2024GB008112","DOIUrl":null,"url":null,"abstract":"<p>Reservoirs influence the global climate by exchanging greenhouse gases (GHGs) of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O) with the atmosphere. Few studies, however, quantify emissions of all three GHGs from reservoirs, particularly in permafrost-affected mountain regions where ecosystems are highly vulnerable to climate change. This study presents three-year direct measurements of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O concentrations and fluxes upstream, within, and downstream from two reservoirs draining permafrost catchments on the Qinghai-Tibet Plateau, including periods of reservoir drawdown. Comparing GHG fluxes across space and time exhibits a general pattern of lower fluxes at the two reservoirs relative to up- and downstream channels. Ebullitive fluxes contributed to 36.7% and 9.4% of total CH<sub>4</sub> and N<sub>2</sub>O fluxes, respectively. CO<sub>2</sub> has no response to drawdown, but CH<sub>4</sub> and N<sub>2</sub>O display synchronous drawdown-associated increase within the reservoir, constituting 57.5% and 32.8% of the annual reservoir emissions in just 2 months, respectively. Riverine emissions from up- and downstream channels accounted for an outsized fraction (55.5% for CH<sub>4</sub>, 17.3% for CO<sub>2</sub> and 16.5% for N<sub>2</sub>O) of the system-wide GHG budget. Compared with global reservoirs, the two reservoirs have high CO<sub>2</sub> and N<sub>2</sub>O but low CH<sub>4</sub> fluxes in CO<sub>2</sub> equivalents. Upscaling shows that the two reservoirs emit the same magnitude of carbon as thermokarst lakes, and four times higher N<sub>2</sub>O than Finnish lakes on an areal basis. This article shows that alpine reservoirs draining permafrost catchments are unrecognized atmospheric sources in current reservoir GHG inventories, but also emphasizes the importance of system-wide emissions when assessing total GHG evasion from reservoir systems.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008112","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoirs influence the global climate by exchanging greenhouse gases (GHGs) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) with the atmosphere. Few studies, however, quantify emissions of all three GHGs from reservoirs, particularly in permafrost-affected mountain regions where ecosystems are highly vulnerable to climate change. This study presents three-year direct measurements of CO2, CH4, and N2O concentrations and fluxes upstream, within, and downstream from two reservoirs draining permafrost catchments on the Qinghai-Tibet Plateau, including periods of reservoir drawdown. Comparing GHG fluxes across space and time exhibits a general pattern of lower fluxes at the two reservoirs relative to up- and downstream channels. Ebullitive fluxes contributed to 36.7% and 9.4% of total CH4 and N2O fluxes, respectively. CO2 has no response to drawdown, but CH4 and N2O display synchronous drawdown-associated increase within the reservoir, constituting 57.5% and 32.8% of the annual reservoir emissions in just 2 months, respectively. Riverine emissions from up- and downstream channels accounted for an outsized fraction (55.5% for CH4, 17.3% for CO2 and 16.5% for N2O) of the system-wide GHG budget. Compared with global reservoirs, the two reservoirs have high CO2 and N2O but low CH4 fluxes in CO2 equivalents. Upscaling shows that the two reservoirs emit the same magnitude of carbon as thermokarst lakes, and four times higher N2O than Finnish lakes on an areal basis. This article shows that alpine reservoirs draining permafrost catchments are unrecognized atmospheric sources in current reservoir GHG inventories, but also emphasizes the importance of system-wide emissions when assessing total GHG evasion from reservoir systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data System-Wide Greenhouse Gas Emissions From Mountain Reservoirs Draining Permafrost Catchments on the Qinghai-Tibet Plateau Interactions Between Multiple Physical Particle Injection Pumps in the Southern Ocean Issue Information Spatial Variability of Dissolved Cobalt in the Indian Ocean Waters: Contrasting Behavior in the Arabian Sea, the Bay of Bengal and the Southern Sector of the Indian Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1