Alayna Mead, Sorel Fitz-Gibbon, John Knapp, Victoria L. Sork
{"title":"Comparison of Conservation Strategies for California Channel Island Oak (Quercus tomentella) Using Climate Suitability Predicted From Genomic Data","authors":"Alayna Mead, Sorel Fitz-Gibbon, John Knapp, Victoria L. Sork","doi":"10.1111/eva.70057","DOIUrl":null,"url":null,"abstract":"<p>Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. <i>Quercus tomentella</i>, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole-genome sequencing on Island Oak individuals and <i>Q. chrysolepis</i>, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade-offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies. Quercus tomentella, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole-genome sequencing on Island Oak individuals and Q. chrysolepis, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade-offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.