Feasibility test of per-flight contrail avoidance in commercial aviation

Aaron Sonabend-W, Carl Elkin, Thomas Dean, John Dudley, Noman Ali, Jill Blickstein, Erica Brand, Brian Broshears, Sixing Chen, Zebediah Engberg, Mark Galyen, Scott Geraedts, Nita Goyal, Rebecca Grenham, Ulrike Hager, Deborah Hecker, Marco Jany, Kevin McCloskey, Joe Ng, Brian Norris, Frank Opel, Juliet Rothenberg, Tharun Sankar, Dinesh Sanekommu, Aaron Sarna, Ole Schütt, Marc Shapiro, Rachel Soh, Christopher Van Arsdale, John C. Platt
{"title":"Feasibility test of per-flight contrail avoidance in commercial aviation","authors":"Aaron Sonabend-W, Carl Elkin, Thomas Dean, John Dudley, Noman Ali, Jill Blickstein, Erica Brand, Brian Broshears, Sixing Chen, Zebediah Engberg, Mark Galyen, Scott Geraedts, Nita Goyal, Rebecca Grenham, Ulrike Hager, Deborah Hecker, Marco Jany, Kevin McCloskey, Joe Ng, Brian Norris, Frank Opel, Juliet Rothenberg, Tharun Sankar, Dinesh Sanekommu, Aaron Sarna, Ole Schütt, Marc Shapiro, Rachel Soh, Christopher Van Arsdale, John C. Platt","doi":"10.1038/s44172-024-00329-7","DOIUrl":null,"url":null,"abstract":"Contrails, formed by aircraft engines, are a major component of aviation’s impact on anthropogenic climate change. Contrail avoidance is a potential option to mitigate this warming effect, however, uncertainties surrounding operational constraints and accurate formation prediction make it unclear whether it is feasible. Here we address this gap with a feasibility test through a randomized controlled trial of contrail avoidance in commercial aviation at the per-flight level. Predictions for regions prone to contrail formation came from a physics-based simulation model and a machine learning model. Participating pilots made altitude adjustments based on contrail formation predictions for flights assigned to the treatment group. Using satellite-based imagery we observed 64% fewer contrails in these flights relative to the control group flights, a statistically significant reduction (p = 0.0331). Our targeted per-flight intervention allowed the airline to track their expected vs actual fuel usage, we found that there is a 2% increase in fuel per adjusted flight. This study demonstrates that per-flight detectable contrail avoidance is feasible in commercial aviation. Vapour trails (contrails) from aircraft make a substantial contribution to aviation’s climate impact. Here we execute a per-flight contrail avoidance feasibility test through altitude adjustments based on contrail formation predictions. The avoidance regime resulted in a 64% reduction in satellite-visible contrails at a 2% increase in fuel burn per adjusted flight.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00329-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00329-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrails, formed by aircraft engines, are a major component of aviation’s impact on anthropogenic climate change. Contrail avoidance is a potential option to mitigate this warming effect, however, uncertainties surrounding operational constraints and accurate formation prediction make it unclear whether it is feasible. Here we address this gap with a feasibility test through a randomized controlled trial of contrail avoidance in commercial aviation at the per-flight level. Predictions for regions prone to contrail formation came from a physics-based simulation model and a machine learning model. Participating pilots made altitude adjustments based on contrail formation predictions for flights assigned to the treatment group. Using satellite-based imagery we observed 64% fewer contrails in these flights relative to the control group flights, a statistically significant reduction (p = 0.0331). Our targeted per-flight intervention allowed the airline to track their expected vs actual fuel usage, we found that there is a 2% increase in fuel per adjusted flight. This study demonstrates that per-flight detectable contrail avoidance is feasible in commercial aviation. Vapour trails (contrails) from aircraft make a substantial contribution to aviation’s climate impact. Here we execute a per-flight contrail avoidance feasibility test through altitude adjustments based on contrail formation predictions. The avoidance regime resulted in a 64% reduction in satellite-visible contrails at a 2% increase in fuel burn per adjusted flight.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商用航空单次飞行轨迹规避的可行性试验
飞机引擎形成的飞机尾迹是航空对人为气候变化影响的主要组成部分。轨迹规避是一种潜在的选择,可以缓解这种变暖效应,然而,围绕操作限制和准确的地层预测的不确定性使得是否可行尚不清楚。在这里,我们通过一项随机对照试验,在每个飞行水平上对商业航空的航迹避免进行可行性测试,以解决这一差距。对容易形成尾迹的区域的预测来自基于物理的模拟模型和机器学习模型。参与试验的飞行员根据对分配给实验组的航班的航迹形成预测来调整飞行高度。通过卫星图像,我们观察到与对照组航班相比,这些航班的尾迹减少了64%,统计学上显著减少(p = 0.0331)。我们的目标每次航班干预允许航空公司跟踪他们的预期和实际燃料使用情况,我们发现每次调整后的航班燃料增加了2%。本研究表明,单次飞行可探测的航迹回避在商用航空中是可行的。飞机产生的蒸汽尾迹(飞机尾迹)对航空业的气候影响做出了重大贡献。在这里,我们通过基于尾迹形成预测的高度调整来执行每次飞行的尾迹避免可行性测试。避免机制导致卫星可见尾迹减少64%,每次调整飞行的燃油消耗增加2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-specified inverse kinematics taught in virtual reality reduce time and effort to hand-guide redundant surgical robots. Three-dimensional runout characterisation for rotationally symmetric components. Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme. A multipath error cancellation method based on antenna jitter. Periodic cooking of eggs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1